Electrophysiological Correlates of Positive Reinforcement: Post-Reinforcement Synchronization, Modulation of Sensory Input, and Steady Potentials

  • T. J. Marczynski


The empirical distinction between neuronal substrates for the positive and negative reinforcement, based on aversive (Delgado, Roberts and Miller, 1954) and rewarding properties (Olds and Milner, 1954; Heath, 1954) of electrical stimuli delivered to appropriate brain structures both in experimental animals and man brought an important element of order to our concepts of brain function. This distinction has engendered not only a broad spectrum of fruitful research but also a stimulating debate on the possible role of reward-aversion systems in the mechanisms of motivation (Olds, 1955; Miller, 1959; Livingston, 1967), in learning (cf. Magoun, 1960; 1964), and in normal and pathological brain function related to complex adaptational and psychodynamic processes (Heath, 1964; Rado, 1964; Stein, 1961; Marczynski and Hackett, 1969).


Sensory Input Positive Reinforcement Food Reward Frontal Sinus Electrophysiological Correlate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P., Eccles, J.C.: Inhibitory phasing of neuronal discharge. Nature (Lond.) 196, 623–647 (1962).CrossRefGoogle Scholar
  2. Sears, A.T.: The role of inhibition in the phasing of spontaneous thalamo-cortical discharge. J. Physiol. (Lond.) 173, 459–480 (1964).Google Scholar
  3. Brady, J.V., Boren, J.J., Conrad, D.G., Sidman, M.: The effect of food and water deprivation upon intracranial self-stimulation. J. Compar. Physiol. Psychol. 50, 134–137 (1957).CrossRefGoogle Scholar
  4. Brooke, R.N.L., Downer, J. de C., Powell, T.P.S.: Centrifugal fibres to the retina in the monkey and cat. Nature (Lond.) 207, 1365–1367 (1965).CrossRefGoogle Scholar
  5. Buchwald, N.A., Horwath, F.E., Wyers, E.J., Wakefield, C.: Electroencephalographic rhythms correlated with milk reinforcement in cats. Nature (Lond.) 201, 830–831 (1964).CrossRefGoogle Scholar
  6. Cajal, S.R.: Die Retina der Wirbeltiere. Wiesbaden: Bergmann 1894.Google Scholar
  7. Clemente, D.C., Sterman, M.B., Wyrwicka, W.: Post-reinforcement EEG synchronization during alimentary Behavior. Electroenceph. clin. Neurophysiol. 16, 355–365 (1964).PubMedCrossRefGoogle Scholar
  8. Crapper, D.R., Noell, W.R.: Retinal excitation and inhibition from direct electrical stimulation. J. Neurophysiol. 26, 924–947 (1963).PubMedGoogle Scholar
  9. Creutzfeldt, O.D., Kuhnt, U.: The visual evoked potentials: Physiological, Developmental and Clinical aspects. Electroenceph. clin. Neurophysiol. suppl. 26, 29–41 (1967).Google Scholar
  10. Sakmann, B.: Neurophysiology of vision. Ann. Rev. Physiol. 31, 499–544 (1969).CrossRefGoogle Scholar
  11. Watanabe, S., Lux, H.D.: Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroenceph. clin. Neurophysiol. 20, 19–37 (1966).PubMedCrossRefGoogle Scholar
  12. Delgado, J.M.R., Roberts, W.W., Miller, N.E.: Learning motivated by electrical stimulation of brain. Amer. J. Physiol. 179, 587 (1954).PubMedGoogle Scholar
  13. Dodt, E.: Centrifugal impulses in rabbit’s retina. J. Neurophysiol. 19, 301–307 (1956).PubMedGoogle Scholar
  14. Doty, R.W., Kimura, D.S.: Oscillatory potentials in the visual system of cat and monkey. J. Physiol. (Lond.) 168, 205–218 (1963).Google Scholar
  15. Eccles, J.C.: The physiology of synapses. Berlin-Heidelberg-New York: Springer 1964.CrossRefGoogle Scholar
  16. — Conscious experience and memory. In: Brain and conscious experience. Ed.: J.C. Eccles. New York: Springer 1966, pp. 313–344.Google Scholar
  17. Fernández-Guardióla, A., Harmony, T., Roldan, E.: Modulation of visual input by pupillary mechanism. Electroenceph. clin. Neurophysiol. 16, 259–268 (1964).PubMedCrossRefGoogle Scholar
  18. Fox, S.S., O’Brien, J.H.: Duplication of evoked potential wave form by curve of probability of firing of a single cell. Science 147, 888–900 (1965).PubMedCrossRefGoogle Scholar
  19. Freedman, S.J., Grunebaum, H.V., Greenblatt, M.: Perceptual and cognitive changes in sensory deprivation. In: Sensory diprivation. Eds.: P. Solomon et al. Cambridge (MA): Harvard University Press Cambridge 1961, pp. 58–71.Google Scholar
  20. Gauthier, C., Parma, M., Zanchetti, A.: Effect of electrocortical arousal upon development and configuration of specific evoked potentials. Electroenceph. clin. Neurophysiol. 8, 237–243 (1956).PubMedCrossRefGoogle Scholar
  21. Granit, R.: Centrifugal and antidromic effects on ganglion cells of retina. J. Neurophysiol. 18, 388–411 (1955).PubMedGoogle Scholar
  22. Grossman, S.P.: Rewarding and aversive effects of central stimulation. In: Textbook of physiological psychology, Chapter 10. Wiley and Sons Inc. 1967, pp. 564-595.Google Scholar
  23. Hackett, J.T., Marczynski, T.J.: Post-reinforcement electrocortical synchronization and enhancement of cortical photic evoked potentials during instrumentally conditioned appetitive Behavior in the cat. Brain. Res. 15, 447–464 (1969).PubMedCrossRefGoogle Scholar
  24. Marczynski, T.J. — Positive reinforcement and visual evoked potentials in cat. Brain Research 26, 57–70 (1971).CrossRefGoogle Scholar
  25. Heath, R.G., and the Department of Psychiatry and Neurology, Tulane University. Studies in Schizophrenia. Cambridge (MA): Harvard University Press 1954.Google Scholar
  26. — Pleasure responses of human subjects to direct stimulation of the brain: Physiologic and psychodynamic considerations. In: The role of pleasure in behavior. Ed.: R.G. Heath. New York: Harper and Row, Hoeber Med. Division 1964, pp. 219–243.Google Scholar
  27. Hernández-Peón, R., Guzman-Flores, Alcaraz, M., Fernández-Guardiola, A.: Sensory transmission in visual pathway during attention in unanesthetized cats. Acta neurol. lat.-amer. 3, 1–8 (1957).Google Scholar
  28. Hoebel, B.G., Teitelbaum, P.: Hypothalamic control of feeding and self-stimulation. Science 135, 375–377 (1962).PubMedCrossRefGoogle Scholar
  29. Humphrey, D.R.: Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroenceph. clin. Neurophysiol. 25, 421–442 (1968).PubMedCrossRefGoogle Scholar
  30. Livingston, R.B.: Reinforcement. In: Neurosciences. Eds.: G.C. Quarton, T. Melnechuk, and F.O. Schmitt. New York: The Rockefeller Univ. Press 1967, pp. 568–577.Google Scholar
  31. Magoun, H.W.: Subcortical mechanisms for reinforcement. Electroenceph. clin. Neuro-physiol Suppl. 13, 221–229 (1960).Google Scholar
  32. — The waking brain, second edition. Springfield: Charles C Thomas 1964, pp. 116–128.Google Scholar
  33. Marczynski, T.J.: Post-reinforcement electrocortical synchronization and the cholinergic system. Fed. Proc. 28(1), 132–134 (1969).PubMedGoogle Scholar
  34. — Cholinergic drugs and epicortical D.C. potentials during instrumentally conditioned Behavior in the cat. Pharmacologist 10(2), 204 (1968).Google Scholar
  35. — Cholinergic mechanism determines the occurrence of ‘Reward Contingent Positive Variation’ (RCPV). Brain Research 28, 71–83 (1971).PubMedCrossRefGoogle Scholar
  36. Hackett, J.T.: Post-reinforcement electrocortical synchronization and facilitation of cortical somatosensory evoked potentials during instrumentally conditioned appetitive Behavior in the cat. Electroenceph. clin. Neurophysiol. 26, 41–49 (1969).PubMedCrossRefGoogle Scholar
  37. Rosen, A.J., Hackett, J.T.: Post-reinforcement electrocortical synchronization and facilitation of cortical auditory evoked potentials in appetitive instrumental conditioning. Electroenceph. clin. Neurophysiol. 24, 227–241 (1968).PubMedCrossRefGoogle Scholar
  38. York, J.L., Hackett, J.T.: Steady potential correlates of positive reinforcement: Reward contigent positive variation. Science 163, 301–304 (1969).PubMedCrossRefGoogle Scholar
  39. Sherry, C.J., Rick, J.H., York, J.L., Allen, S.L.: Visual unpatterned input determines the occurrence of reward-contingent positive variation. Experientia 27, 51–52 (1971a).PubMedCrossRefGoogle Scholar
  40. Rick, J.H., York, J.L., Allen, S.L. — Diffuse light input and quality reward determine the occurrence of ‘Reward Contingent Positive Variation’ (RCPV) in cat. Brain Research 28, 57–70 (1971b).PubMedCrossRefGoogle Scholar
  41. York, J.L., Allen, S.L., Rick, J.H., Sherry, C.J.: Steady potential correlates of positive reinforcement and sleep onset in the cat; ‘Reward Contingent Positive Variation’ (RCPV). Brain Research 26, 305–332 (1971c).PubMedGoogle Scholar
  42. Margules, D.L., Olds, J.: Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rat. Science 133, 374–375 (1962).CrossRefGoogle Scholar
  43. Miller, N.E.: Central stimulation and other approaches to motivation and reward. Amer. Psychologist 13, 100–108 (1958).CrossRefGoogle Scholar
  44. — Liberalization of basic S-R concepts: extensions to conflict Behavior, motivation, and social learning. In: Psychology: a study of science, Study I, vol. 2. Ed.: S. Koch. New York: McGraw-Hill 1959.Google Scholar
  45. Nauta, W.J.H.: Some neural pathways related to the limbic system. In: Electrical studies on the unanesthetized brain. Eds.: E.R. Ramey and D.S. ODoherty. New York: Harper and Brothers 1960, pp. 1–16.Google Scholar
  46. O’Donohue, N.F., Hagamen, W.D.: A map of the cat for regions producing self-stimulation and unilateral inattention. Brain Res. 5, 289–305 (1967).CrossRefGoogle Scholar
  47. Olds, J.: Physiological mechanisms in reward. In: Nebraska symposium on motivation. Ed.: M.R. Jones. Lincoln: Univ. of Nebraska Press 1955.Google Scholar
  48. — Runway and maze Behavior controlled by basomedial forebrain stimulation in the rat. J. Comp. Physiol. Psychol. 49, 507–512 (1956).PubMedCrossRefGoogle Scholar
  49. — Differentiation of reward systems in the brain by self-stimulation techniques. In: Electrical studies on the unanesthetized brain. Eds.: E.R. Ramey and D.S. ODoherty. New York: Harper and Brothers 1960, pp. 17–51.Google Scholar
  50. — Differential Effects of Drives and Drugs on Self-stimulation at Different Brain Sites. In: Electrical stimulation of the brain. Ed.: D.E. Sheer. Austin: Univ. of Texas Press 1961, pp. 350–366.Google Scholar
  51. Milner, P.: Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419 (1954).PubMedCrossRefGoogle Scholar
  52. Travis, R.P., Schwing, R.C.: Topographic organization of hypothalmic self-stimulation functions. J. Comp. Physiol. Psychol. 53, 23 (1960).PubMedCrossRefGoogle Scholar
  53. Palestini, M., Davidovich, A., Hernández-Peón, R.: Functional significances of centrifugal influences upon retina. Acta Neurol. Latinoamer. 5, 113–131 (1959).Google Scholar
  54. Prescott, R.G.W.: Estrous cycle in the rat: effects on self-stimulation Behavior. Science 1952, 796–797 (1966).CrossRefGoogle Scholar
  55. Rado, S.: Hedonic self-regulation of the organism. In: The role of pleasure in behavior. Ed.: R.G. Heath. New York: Harper and Row, Hoeber med. Division 1964, pp. 257–264.Google Scholar
  56. Stein, L.: Effects of interaction of imipramine, chloropromazine, reserpine and amphetamine on self-stimulation: Possible neurophysiological basis of depression. Rec. Adv. Biol. Psychiat. 4, 288–309 (1961).Google Scholar
  57. Sterman, M.B., Clemente, C.D.: Basal forebrain structures and sleep. Acta neurol. lat.-amer. 14, 228–244 (1968).Google Scholar
  58. Clemente, C.D. — Forebrain inhibitory mechanisms: Cortical synchronization induced by basal forebrain stimulation. Exp. Neurol. 6, 91–102 (1962).PubMedCrossRefGoogle Scholar
  59. Wyrwicka, W.: EEG correlates of sleep: evidence for separate forebrain substrates. Brain Res. 6, 143–163 (1967).PubMedCrossRefGoogle Scholar
  60. Roth, S.R., Clemente, C.D.: EEG correlates of instrumental performance. Fed. Proc. 22, 399 (1963).Google Scholar
  61. Vernon, J.A., McGill, T.E., Gulick, W.L., Candland, D.R.: The effect of human isolation upon some perceptual and motor skills. In: Sensory Deprivation. Eds.: Solomon et al., Cambridge (MA): Harvard University Press 1961, pp. 41–57.Google Scholar
  62. Watanabe, S., Konishi, M., Creutzfeldt: Postsynaptic potentials in the cat’s visual cortex following electrical stimulation of afferent pathways. Exp. Brain Res. 1, 272–283 (1966).PubMedGoogle Scholar
  63. Widen, L., Ajmone-Marsan, D.: Unitary analysis of the responses elicited in the visual cortex of cat. Arch. ital. Biol. 98, 248–274 (1960).Google Scholar
  64. Wurtz, R.H.: Steady potential correlates of intracranial reinforcement. Electroenceph. clin. Neurophysiol. 20, 59–67 (1966).PubMedCrossRefGoogle Scholar
  65. Yamaguchi, N., Ling, G.M., Marczynski, T.J.: Recruiting responses observed during wake-fulness and sleep in unanesthetized chronic cats. Electroenceph. clin. Neurophysiol. 17, 246–254 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • T. J. Marczynski
    • 1
  1. 1.College of Medicine, Department of PharmacologyUniversity of Illinois at the Medical CenterChicagoUSA

Personalised recommendations