Abstract

Next to chemical composition, size and weight are the most significant properties of a molecule. The molecular weight is frequently the decisive parameter to distinguish two molecules. The difference in molecular size plays a role in all conventional physical separation methods. The higher homologues of a series show usually higher melting and boiling points as well as lower solubility than related compounds of similar structure. For all practical purposes these differences are overlapping with other properties such as polarity or electrical charge density which determine the behavior of a substance during crystallization, distillation, extraction and during most of the Chromatographic methods of separation. Sorting by size is a very common ordering principle in the macroscopic world. At the molecular level it was applied relatively late and in only a few isolated cases. It is also true for separations which are based on differences in molecular weight that other factors than the difference in molecular size play a role.

Keywords

Cellulose Porosity Crystallization Migration Foam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svedberg, T., and K. O. Pedersen: The Ultrazentrifuge, Oxford, 1940.Google Scholar
  2. —_Schachmann, H. K.: Ultracentrifugation in Biochemistry, New York 1955.Google Scholar
  3. 2.
    Hermans, J. J., and H. A. Ende in B. Ke Ed.: Newer Methods of Polymer Characterisation, 525. New York 1964.Google Scholar
  4. —_R. Trautmann in D.W. Newman Ed.: Instrumental Methods of Experimental Biology, 211. New York 1964.Google Scholar
  5. 3.
    Barrer, R. M.: Ber. Bunsenges. Physik. Chem. 69, 787 1965.Google Scholar
  6. 4.
    Barrer, R. M.: Endeavour 23, 122 1964.CrossRefGoogle Scholar
  7. 5.
    Barrer, R. M.: British Chem. Engng. 7, 267 1959.Google Scholar
  8. 6.
    Scheuermann, E. A.: Chemiker-Ztg. 20, 767 1961.Google Scholar
  9. 7.
    Graham, Th.: Phil. Trans. Roy. Soc, London, 151, 183 1861.CrossRefGoogle Scholar
  10. 8.
    Craig, L. C., and W. Konigsberg: J. phys. Chem. 65, 166 1961.CrossRefGoogle Scholar
  11. 9.
    Pierce, J. G., and C. A. Free: Biochim. biophys. Acta 48, 436 1961.CrossRefGoogle Scholar
  12. 10.
    Rosenfeld, M.: Biochim. biophys. Acta 75, 241 1963.CrossRefGoogle Scholar
  13. 11.
    Ackers, G. K., and R. L. Steere: Biochim. biophys. Acta 59, 137 1962.CrossRefGoogle Scholar
  14. 12.
    Russell, B., J. Levitt and A. Polson: Biochim. biophys. Acta 79, 622 1964.Google Scholar
  15. 13.
    Craig, L. C., and A. O. Pulley: Biochemistry 1, 89 1962.CrossRefGoogle Scholar
  16. 14.
    Craig, L. C., and A. Ansevin: Biochemistry 2, 1268 1963.CrossRefGoogle Scholar
  17. 15.
    Craig, L. C., E. J. Harfenist, and A. C. Paladini: Biochemistry 3, 764 1964.CrossRefGoogle Scholar
  18. 16.
    Craig, L. C., E. J. Harfenist, and A. C. Paladini: Adv. anal. Chem. Instr. 4, 35 1965Google Scholar
  19. 17.
    Synge, R. L. M., and M. A. Youngson: Biochem. J. 78, 31 P 1961.Google Scholar
  20. 18.
    Signer, R., H. Hänni, W. Koestler, W. Rottenburg und P. V. Tavel: Helv. chim. Acta 29, 1894 1946.Google Scholar
  21. 19.
    Craig, L. C., and T. P. King: J. Amer. chem. Soc. 77, 6620 1955; 78, 4171 1956.CrossRefGoogle Scholar
  22. 20.
    Wieland, Th., H. Determann und E. Albrecht: Liebigs Ann. Chem. 633, 185 1960.CrossRefGoogle Scholar
  23. 21.
    Mould, D. L., and R. L. M. Synge: Biochem. J. 58, 571 1954.Google Scholar
  24. 22.
    Allison, A. C., and J. H. Humphrey: Nature, 183, 1590 1959.CrossRefGoogle Scholar
  25. 23.
    Smithies, O.: Biochem. J. 61, 629 1955.Google Scholar
  26. 24.
    Smithies, O.: Arch. Biochem. Biophys. Suppl. 1, 125 1962.Google Scholar
  27. 25.
    Tombs, M. P.: Anal. Biochem. 13, 121 1965.CrossRefGoogle Scholar
  28. 26.
    Ornstein, L.: Ann. N.Y. Acad. Sci. 121, 321 1964CrossRefGoogle Scholar
  29. B. J. Davis: Ann. N.Y. Acad. Sci. 121, 404 1964.CrossRefGoogle Scholar
  30. 27.
    Stauff, J.: Kolloidchemie, 665 ff. Berlin, Göttingen, Heidelberg 1960.Google Scholar
  31. 28.
    Hermans, P. H.: Gels, in Kruyt: Ed. Colloid Science, 2, 483. Amsterdam 1949.Google Scholar
  32. 29.
    Stauff, J.: Kolloidchemie, 669 ff. Berlin, Göttingen, Heidelberg 1960.Google Scholar
  33. 30.
    Porath, J., and P. Flodin: Nature 183, 1657 1959.CrossRefGoogle Scholar
  34. 31.
    Fasold, H., G. Gundlach, and F. Turba in Heftmann Ed.: Chromatography, 406. New York 1961.Google Scholar
  35. 32.
    Pedersen, K. O.: Arch. Biochem. Biophys., Suppl. 1, 157 1962.Google Scholar
  36. 33.
    Hjertén, S., and R. Mosbach: Anal. Biochem. 3, 109 1962.CrossRefGoogle Scholar
  37. 34.
    Moore, J. C: J. Polym. Sci. A 2, 835 1964.Google Scholar
  38. 35.
    Determann, H.: Angew. Chem. 76, 635 1964; Internat. Ed. 3, 608 1964.CrossRefGoogle Scholar
  39. 36.
    Samuelson, O., Ref. in W. Lautsch: Angew. Chem. 57, 149 1944.Google Scholar
  40. 37.
    Rauen, H. M., und K. Felix: Z. Physiol. Chem. 283, 139 1948.CrossRefGoogle Scholar
  41. 38.
    Kunin, R., and R. J. Meyers: Discuss. Faraday Soc. 7, 114 1949.CrossRefGoogle Scholar
  42. 39.
    Richardson, R.W.: Nature 164, 916 1949.CrossRefGoogle Scholar
  43. 40.
    — J. Chem. Soc. 1951, 910.Google Scholar
  44. 41.
    Thompson, A. R.: Nature 169, 495 1952.CrossRefGoogle Scholar
  45. 42.
    Partridge, S. M.: Nature 169, 496 1952.CrossRefGoogle Scholar
  46. 43.
    Deuel, H., J. Solms und L. Anyas-Weisz: Helv. chim. Acta 33, 2171 1950.CrossRefGoogle Scholar
  47. 44.
    Mikes, J. A.: J. polym. Sci. 30, 615 1958CrossRefGoogle Scholar
  48. 45.
    Wheaton, R. M., and W. C. Baumann: Ann. New York Acad. Sci. 57, 159 1953.CrossRefGoogle Scholar
  49. 46.
    Clark, R.T.: Analytic. Chem. 30, 1676 1958.CrossRefGoogle Scholar
  50. 47.
    Tiselius, A.: Naturwiss. 37, 25 1950; Adv. Prot. Chem. 3, 67 1947.CrossRefGoogle Scholar
  51. 48.
    Deuel, H., and H. Neukom: Adv. in Chemistry Series 11, 51 1954.Google Scholar
  52. 49.
    Lindqvist, B., and T. Storgårds: Nature 175, 511 1955.CrossRefGoogle Scholar
  53. 50.
    Lathe, G. H., and C. R. J. Ruthven: Biochem. J. 62, 665 1956.Google Scholar
  54. 51.
    Polson, A.: Biochim. biophys. Acta 19, 53 1956.CrossRefGoogle Scholar
  55. 52.
    Porath, J.: Clin. chim. Acta 4, 776 1959.CrossRefGoogle Scholar
  56. 53.
    Björk, W., and J. Porath: Acta chem. Scand. 13, 1256 1959.CrossRefGoogle Scholar
  57. 54.
    Flodin, P.: Dissertation Uppsala 1962.Google Scholar
  58. 55.
    Polson, A.: Biochim. biophys. Acta 50, 565 1961.CrossRefGoogle Scholar
  59. 56.
    Steere, R. L., and G. K. Ackers: Nature 196, 475, 1962; 194, 114 1962.CrossRefGoogle Scholar
  60. 57.
    Hjertén, S.: Arch. Biochem. Biophys. 99, 466 1962.CrossRefGoogle Scholar
  61. 58.
    Vaughan, M. F.: Nature 188, 55 1960.CrossRefGoogle Scholar
  62. 59.
    Cortis-Jones, B.: Nature 191, 272 1961.CrossRefGoogle Scholar
  63. 60.
    Brewer, P. J.: Nature 188, 934 1960; 190, 625 1961.CrossRefGoogle Scholar
  64. 61.
    Determann, H., G. Lüben und Th. Wieland: Makromol. Chem. 73, 168 1964.CrossRefGoogle Scholar
  65. 62.
    Kunin, R., E. Meitzner, and N. Bortnick: J. Amer. chem. Soc. 84, 305 1962.CrossRefGoogle Scholar
  66. Kunin, R., E. F. Meitzner, J. A. Oline, S. A. Fisher, and V. Frisch: I & EC Prod. Res. Develop. 1, 140 1962. — B. P. 932 125 and 932 126.CrossRefGoogle Scholar
  67. 63.
    Millar, J. R., D. G. Smith, W. E. Marr, and T. R. E. Kressman, J. chem. Soc. 1963, 219. — B. P. 849 122.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • Helmut Determann
    • 1
  1. 1.Institut für Organische ChemieUniversität Frankfurt am MainGermany

Personalised recommendations