Eiweißstoffwechsel

  • K. Schreier
Part of the Handbuch der Kinderheilkunde book series (HDB KINDERHEIL, volume 4)

Zusammenfassung

Seit den Studien von Hopkins und Sciner Arbeitsgruppe, welche später von Rose fortgeführt wurden, wissen wir, daß es lebensnotwendige Aminosäuren gibt und solche, welche vom Körper selbst synthetisiert werden können. Für das Kind sind folgende neun Amino-säuren (AS) essentiell, d. h. sie müssen mit der Nahruns in ausreichen-der Menge zugeführt werden:
  • Histidin; Isoleucin; Leucin; Lysin; Methionin; Phenylalanin; Threonin; Tryptophan und Valin.

Literatur

  1. Barlow, A., and E. A. McCance: The nitrogen partition in newborn infant urine. Arch. Dis. Childh. 28, 225 (1948).Google Scholar
  2. Bickel, H.: Die Aminosäuren- und Zuckerrückresorption im Tubulus reifer und frühgeborener Kinder. In: F. Linneweh, Die physiologische Entwicklung des Kindes. Berlin -Göttingen-Heidelberg: Springer 1959.Google Scholar
  3. Bickel, H., u. F. Souchon: Die Papierchromatographie in der Kinderheilkunde. Arch. Kinderheilk., Beih. 31, 1 (1955).Google Scholar
  4. Bigwood, E. J., E. Crokaert, E. Schräm, P. Soupart, and H. Vis: Amino aciduria. Advanc. clin. Chem. 2, 20 (1959).Google Scholar
  5. Christensen, H.N.: Decreasing tissue amino acid hunger with age. Geriatrics 14, 429 (1959).Google Scholar
  6. Christensen, H.N., and J.S. Streicher: Association between rapid growth and elevated cell concentrations of amino acids. I. In fetal tissues. J. biol. Chem. 175, 95 (1948).Google Scholar
  7. Crick, F. U.: Angew. Chemie 75, 425 (1963).Google Scholar
  8. Crumpler, H. E., C.E. Dent and O. Lindau: The amino acid pattern in human foetal and maternal plasma at delivery. Biochem. J. 47, 223 (1950).PubMedGoogle Scholar
  9. Daffner, H. W., u. K. Schreier: Über das Verhalten der Proteinsyntheserate in verschiedenen Organen während der Pränatalperiode bei Kaninchen. Clin. chim. Acta 6, 104 (1961).Google Scholar
  10. Dent, C.E.: A study of the behaviour of some sixty aminoacids and other ninhydrin-reacting substances on phenol-,,collidme“ filter paper chromatograms, with notes as to the occurence of some of them in biological fluids Biochem. J. 43, 169 (1948).Google Scholar
  11. Dent, C.E.: Clinical applications of amino acid chromatography. Scand. J. clin. Lab. Invest. 10, Suppl. 31, 122 (1957).Google Scholar
  12. Finkelstein, A.: Untersuchungen am Nabel-schnurblut bei Frühgeborenen und ausgetragenen Kindern mit besonderer Berücksichtigung der Aminosäuren. Z. Kinderheilk. 51, 78 (1961).Google Scholar
  13. Flaschenträger, B., u. E. Lehnartz: Physiologische Chemie, Bd. I., II., III. Berlin-Göt-tingen-Heidelberg: Springer 1951–1957.Google Scholar
  14. Gerok, W.: Quantitative Bestimmung der freien und gebundenen Aminosäuren im Blutserum durch Elutionschromatographie aus Ionenaustauschern. Klin. Wschr. 38, 1212 (1960).PubMedGoogle Scholar
  15. Gerok, W., u. J. Gayer: Die tubuläre Eückresorption der L-Aminosäuren in der Mere des Hundes. Klin. Wschr. 89, 540 (1961).Google Scholar
  16. Goebel, F.: Über die Aminosäurenfraktion im Säuglingsharn. Kinderheilk. Z. 34, 94 (1922).Google Scholar
  17. Gullino, P., M. Winitz, and J. P. Greenstein: Studies on the toxicity of amino acids and related compounds in vivo. I. Arch.Biochem.64,319, (1956).PubMedGoogle Scholar
  18. Gullino, P., M. Winitz, and J. P. Greenstein: Studies on the toxicity of amino acids and related compounds in vivo. II. Arch.Biochem.64,333, (1956).PubMedGoogle Scholar
  19. Gullino, P., M. Winitz, and J. P. Greenstein: Studies on the toxicity of amino acids and related compounds in vivo. III. Arch.Biochem.64, 342, (1956).PubMedGoogle Scholar
  20. Gullino, P., M. Winitz, and J. P. Greenstein: Studies on the toxicity of amino acids and related compounds in vivo. IV. Arch.Biochem.64, 355, (1956).Google Scholar
  21. Gullino, P., M. Winitz, and J. P. Greenstein: Studies on the toxicity of amino acids and related compounds in vivo. V. Arch.Biochem.64, 368 (1956).Google Scholar
  22. Hagihira, H., T. H. Eilson, and E. C. C. Lin: Intestinal transport of certain N-substituted amino acids. Amer. J. Physiol. 208, 637 (1962).Google Scholar
  23. Hirsch, W. A., A. Mex u. F. Vogel: Quantitative Abweichungen am Rande der Norm in den freien Aminosäuren von Serum und Urin bei schwachsinnigen Kindern. Mschr. Kinder -heilk. 111, 344 (1963).Google Scholar
  24. Holt jr. L. E.: Essential amino acid requirements of infants. Amer. J. Dis. Child. 102, 163 (1961).Google Scholar
  25. Huisman, T. H.: The concentration of different amine acids in the blood plasma in children suffering from rickets and scurvy. Pediatrics 14, 245 (1954).PubMedGoogle Scholar
  26. Jonxis, J. H. P.: Aminoaciduria and rickets. Helv. paediat. Acta 10, 245 (1955).PubMedGoogle Scholar
  27. Jonxis, J. H. P.: Aminoacidurie. Ergebn. inn. Med. Kinder -heilk. 8, 169 (1957).Google Scholar
  28. Jonxis, J. H. P., and Th. J. Huisman: Aminoaciduria in rachitic children. Lancet 1953 I, 428.Google Scholar
  29. Jonxis, J. H. P., Th. J. Huisman:, and T. H. J. Huisman: Aminoaciduria and ascorbic acid deficiency. Pediatrics 14, 238 (1954).PubMedGoogle Scholar
  30. Kaufman, N., J. V. Klavins, and T. D. Kinney: Pancreatic damage induced by excess methionine. Arch. Path. 70, 331 (1960).PubMedGoogle Scholar
  31. Kleinbaum, H.: Über die Aminoaciduria tuberkulöser Kinder und Jugendlicher. Mschr. Kinderheilk. 103, 26 (1955).Google Scholar
  32. Kleinbaum, H.: Über die Amino-Stickstoffausscheidung im Urin bei Säuglingen mit akuten Ernährungsstörungen. Z. Kinderheilk. 79, 465 (1957).PubMedGoogle Scholar
  33. Lichtenstein, A.: Untersuchungen am Nabelschnurblut bei Frühgeborenen und ausgetragenen Kindern mit besonderer Berücksichtigung der Aminosäuren. Z. Kinderheilk. 51, 748 (1931).Google Scholar
  34. Linneweh, F., M. Ehrlich, E. H. Graul u. H. Hundeshagen: Über den Aminosäurentransport bei phenylketonurischer Oligophrenie. Klin. Wschr. 41, 253 (1963).Google Scholar
  35. Loeb, H., et M. Engelen: Étude de 1’amino acidurie du nourrison normal. Acta paediat. belg; 10, 145 (1956).PubMedGoogle Scholar
  36. Loeb, H., et M. Engelen: Étude de l’amino acidurie du nourrison en état de toxicóse. Arch, franç Pédiat. 14, 7 (1957).Google Scholar
  37. Logothetis, J.: A study of free amino acids in the human cerebrospinal fluid. Neurology (Minneap.) 5, 767 (1955).Google Scholar
  38. Morse, A.: The amino acid nitrogen in the blood in cases of normal and complicated pregnancy and also in the newborn infant. Bull. Johns Hopk. Hosp. 28, 199 (1917).Google Scholar
  39. Müting, D., u. K. N. Shivaram: Quantitative papierchromatographische Bestimmungen der freien Aminosäuren im Liquor cerebrospinalis gesunder Menschen. Hoppe-Seylers Z. physiol. Chem. 317, 34 (1959).Google Scholar
  40. O’Brien, D., J. Bergstedt, J. Butterfield, F. Ibbott, and L. Lubchenco: Observations on the urinary excretion of amino acids by the premature infant. Acta paediat. (Uppsala) 49, 258 (1960).Google Scholar
  41. Page, E. W., M. B. Glendening, W. Digman, and H.A. Harper: The causes of histidinuria in normal pregnancy. Amer. J. Obstet. Gynec. 68, 110 (1955).Google Scholar
  42. Peters, J. P., and D. D. van Slyke: Quantitative clinical chemistry. Interpretations. London: Bailiére, Tindall & Co. 1946.Google Scholar
  43. Pfaundler, P.M.: Über ein Verfahren zur Bestimmung des Aminosäurenstickstoffes im Harn. Hoppe-Seylers Z. physiol. Chem. 80, 75 (1900).Google Scholar
  44. Pitts, E. F.: A comparison of the renal reabsorptive process for several amino acids. Amer. J. Physiol. 140, 535 (1944).Google Scholar
  45. Prokop, D. J., C. Mitoma, and A. Sjoedersma: Observations on hydroxyproline metabolism in man. Fed. Proc. 18, 434 (1959).Google Scholar
  46. Rabinowitsch, K. N.: C. R. Soc. Biol. (Paris) 66, 457 (1914).Google Scholar
  47. Rose, W. C.: Amino acid requirements in man. Arbeiten im J. biol. Chem. 1954–1956.Google Scholar
  48. Schönenberg, H.: Papierchromatographische Liquoruntersuchungen. Die Papierchromatographie der Aminosäuren des Liquors bei centralnervösen, entzündlichen Erkrankungen. Z. Kinderheilk. 75, 301 (1954).PubMedGoogle Scholar
  49. Schoenheimer, R., S. Ratner, and D. Rittenberg: Studies in protein metabolism metabolic activity of body proteins investigated with 1(—)leucine containing two isotopes. J. biol. Chem. 130, 703 (1939).Google Scholar
  50. Schreier, K.: Die Bedeutung der Aminosäuren in der Säuglings- und Kinderernährung. Med. u. Ernähr. 1, 223, 247 (1960).Google Scholar
  51. Schreier, K.: The behaviour of amino acids in body fluids during development and growth: physiology and pathology. In: Amino Acid Pools. Amsterdam and New York: Elsevier Publ. Co. 1962.Google Scholar
  52. Schreier, K.: unter Mitarbeit von W. Mattern, U. Porath, J. Spranger u. W. G. Lasch: Die angeborenen Stoffwechselanomalien. Stuttgart: Georg Thieme 1963.Google Scholar
  53. Schreier, K., R. Ittensohn, U. Hans u. W. Sievers: Über die Clearance-Rate einiger Aminosäuren bei Säuglingen und Frühgeborenen. Z. Kinderheilk. 79, 165 (1957).PubMedGoogle Scholar
  54. Schreier, K., R. Ittensohn, U. Hans u. W. Sievers, u. K. Kazassis: Über den Einfluß von verschiedenen Mangelernährungen auf den Einbau von C14-Lysin in die Körperproteine junger Ratten mit einigen Ergebnissen bei neugeborenen Kaninchen. Dtsch. Z. Verdau.- u. Stoffwechselkr. 20, 79 (1960).Google Scholar
  55. Schreier, K., R. Ittensohn, U. Hans u. W. Sievers, u. K. Kazassis, u. U. Porath: Studien zur Entwicklungs-physiologie des Proteinstoffwechsels in verschiedenen Organen des Kaninchens. Clin. chim. Acta 6, 205 (1961).PubMedGoogle Scholar
  56. Schreier, K., R. Ittensohn, U. Hans u. W. Sievers, u. K. Kazassis, u. U. Porath: Studien zur Entwicklungsphysiologie des Stoffwechsels. (Im Druck.)Google Scholar
  57. Schreier, K., R. Ittensohn, U. Hans u. W. Sievers, u. K. Kazassis, u. U. Porath, u. H. Remsperger: Über den Einfluß der Nahrungsstoffe auf die Serumspiegel der einzelnen Aminosäuren. Biochem. J. 322, 298 (1952).Google Scholar
  58. Schreier, K., R. Ittensohn, U. Hans u. W. Sievers, u. K. Kazassis, u. U. Porath, u. H. Remsperger, u. H. Stieg: Über den Aminosäurengehalt im Nabelschnurblute. Z. Kinderheilk. 68, 563 (1950).PubMedGoogle Scholar
  59. Sereni, P., H. McNamaba, M. Shibuya, N. Kretchmer, and H.L. Barnett: Concentration in plasma and rate of urinary excretion of amino acids in prematural infants. Pediatrics 15, 575 (1955).PubMedGoogle Scholar
  60. Simon, S.: Zur Stickstoffverteilung im Urin des Neugeborenen. Z. Kinderheilk. 2, 1 (1911).Google Scholar
  61. Slyke, D. D., and G. M. Meyer: The amino acid nitrogen of the blood: Prelirninary experiments on protein assimilation. J. biol. Chem. 12, 399 (1912).Google Scholar
  62. Smith, B., and D. J. Prokop: Central nervous system effects of ingestion of 1-tryptophane by normal subjects. New Engl. J. Med. 267, 1338 (1962).PubMedGoogle Scholar
  63. Smith, D. M., E. M. Paul, E. G. McGeer, and P. L. McGeer: A general chromatographic surrey of chromatic compounds abtained from urine. Canad. J. Biochem. 37, 1493 (1959).PubMedGoogle Scholar
  64. Solomon, J. D., S. W. Hier, and O. Bergheim: Free amino acids in cerebrospinal fluid. J. biol. Chem. 171, 695 (1947).PubMedGoogle Scholar
  65. Soupart, P.: In: Amino Acid Pools, Hrsg. J. T. Holden. Amsterdam and New York: Elsevier Publ. Co. 1962.Google Scholar
  66. Stave, U.: Aminosäuren -Verf ütterung und Tu-bulusschaden II. Die tubuläre Punktion nach Cystin-Verfütterung bei Kaninchen. Z. Kinderheilk. 78, 275 (1956).PubMedGoogle Scholar
  67. Stearns, zit. nach Holt.Google Scholar
  68. Stroeder, J., H. Grünhoferu. W. Engel: Studien über das Verhalten freier Aminosäuren im kindlichen Organismus. Ann. paediat. (Basel) 177, 304 (1951).Google Scholar
  69. Waterlow, J. C.: Protein nutrition and enzyme changes in man. Fed. Proc. 18, 1143 (1959).PubMedGoogle Scholar
  70. Watson, J. D.: Beteiligung der Eibonuclein-säure an der Proteinsynthese. Angew. Chem. 10, 439 (1962).Google Scholar
  71. Willcock, E. G., and F. G. Hopkins: The importance of individual amino acids in metabolism. J. Physiol. 35, 88 (1906).PubMedGoogle Scholar
  72. Wiseman, G.: Absorption of amino acids using an in vitro technique. J. Physiol. (Lond.) 120, 63 (1952).Google Scholar
  73. Woolf, B. L. I., and A. P. Norman: The urinary excretion of amino acids and sugars in early infancy. J. Pediat. 50, 271 (1957).PubMedGoogle Scholar
  74. Bloxam, H. H., M. G. Day, N. K. Gibbs, and L. I. Woolf: An inborn defect in the metabolism of tyrosine in infants on a normal diet. Biochem. J. 77, 320 (1960).PubMedGoogle Scholar
  75. Dakin, H. D.: The chemical nature of alkaptonuria. J. biol. Chem. 9, 151 (1911).Google Scholar
  76. Felix, K., G. Leonardi u. I. v. Glasenapp: Über Tyrosinosis. Hoppe-Seylers Z. physiol. Chem. 287, 141 (1951).PubMedGoogle Scholar
  77. Flamm, W. G., and D. I. Crandall: Purification of mammalian homogentisate oxidase and evidence for the existence of ferrous mercap-tans in the active center. J. biol. Chem. 288, 829 (1963).Google Scholar
  78. Gros, H., E. J. Kirnberger u. A. Bopp: Spontanausscheidung von p-Oxyphenylbrenztrau-bensäure im Harn. Klin. Wschr. 32, 115 (1954).PubMedGoogle Scholar
  79. Henning, U., u. R. Ammon: Über das Auftreten von p-Hydroxyphenylbrenztraubensäure und anderer α-Ketosäuren im Harn von gesunden und leberkranken Kaninchen. Hoppe Seylers Z. physiol. Cbem. 306, 214 (1957).Google Scholar
  80. Kretchmer, N., and D. Etzwiler: Disorders associated with the metabolism of phenylalanine and tyrosine. Pediatrics 22, 445 (1958).Google Scholar
  81. Levine, S. Z., H. H. Gordon, and E. Marples: Defect in the metabolism of tyrosine and phenylalanine in premature infants: spontaneus occurrence and eradication by vitamin C. J. clin. Invest. 20, 209 (1941).PubMedGoogle Scholar
  82. Medes, G.: A new error of tyrosine metabolism: Tyrosinosis. The intermediary metabolism of tyrosine and phenylalanine. Biochem. J. 26, 917 (1932).PubMedGoogle Scholar
  83. Menkes, J. H.: Maple syrup disease and other disorders of keto acid metabolism. Ultrastruct. Metabol. nerv. Syst. 40, 69 (1963).Google Scholar
  84. Neubauer, O., u. W. Falta: Über das Schicksal eini -ger aromatischer Säuren bei der Alkaptonurie. Hoppe-Seylers Z. physiol. Chem. 42, 81 (1904).Google Scholar
  85. Pirrung, J., K. Gottesman, and D. J. Crandall: The metabolism of p-methoxyphenyl-alanine and p-methoxyphenylpyruvate. J. biol. Chem. 229, 199 (1957).PubMedGoogle Scholar
  86. Sakai, K., T. Kitagawa, and K. Yoshioka: An atypical case of tyrosinosis. Jikaikai med. J. 6, 15 (1959).Zusammenfassende Arbeiten Google Scholar
  87. Bickel, H.: Phenylketonurie. In: F. Linneweh, Erbliche Stoffwechselkrankheiten. München u. Berlin: Urban & Schwarzenberg 1963.Google Scholar
  88. Hsia, D. Y.: Eecent development in inborn errors of metabolism. Amer. J. publ. Hlth 50, 1653 (1960).Google Scholar
  89. Jervis, G. A.: Phenylpyruvic oligophrenia (Phenylketonuria). Genetics and the inheritance of integrated neurological and psychiatric patters. Ass. Ees. nerv. Dis. Proc. 33, 259 (1954).Google Scholar
  90. Knox, E. W.: Phenylketonuria. In: J. B. Stanbury, J. B. Wyngaarden and D. S. Fredricks on (Edit.), The mtabolic basis of inherited disease, p. 321. New York- Toronto-London: McGraw-Hill Book Co. 1960.Google Scholar
  91. Kretchmer, N., and D. Etzwiler: Disorders associated with the metabolism of phenylalanine and tyrosine. Pediatrics 22, 445 (1958).Google Scholar
  92. Lang, K.: Die phenylpyruvische Oligophrenic Ergebn. inn. Med. Kinderheilk. 6, 78 (1955).Google Scholar
  93. Schreier, K.: Die angeborenen Störungen im Phenylalaninstoffwechsel. Mod. Probi. Pädiat. 3, 285 (1957).Google Scholar
  94. Schreier, K.: Die angeborenen Stoffwechselanomalien. Stuttgart: Georg Thieme 1963.Google Scholar
  95. Schultze-Jena, B. S.: Erbliche Defekte des Aminosäurenstoffwechsels. Ergebn. inn. Med. Kinderheilk. 18, 1 (1962).Google Scholar
  96. Wallace, H.W.: Phenylpyruvic oligophrenia. Bull. New Engl. med. Cent. 5, 16 (1959).Google Scholar

Einzelarbeiten

  1. Baldridge, E. C., L. Borofsky, H. Baird III, F. Eeichle, and D. Bullock: Eelationship of serum phenylalanine levels and ability of phenylketonurics to hydroxylate tryptophan. Proc. Soc. exp. Biol. (N.Y.) 100, 529 (1959).Google Scholar
  2. Berendes, H., J. A. Anderson, M. E. Ziegler, and D. Euttenberg: Disturbance in tryptophan metabolism in phenylketonuria. Amer. J. Dis. Child. 96, 430 (1958).Google Scholar
  3. Berry, H. K., B. Sutherland, and G. M. Guest: Phenylalanine tolerance tests on relatives of Phenylketonuric children. Amer. J. hum. Gent. 9, 310 (1957).Google Scholar
  4. Bessmann, S. P., and K. Tada: Metabolism of tryptophane in phenylketonuria. Pediatrics 23, 1004 (1959).Google Scholar
  5. Bickel, H.: Cerebrale Manifestationen hereditärer Stoffwechselkrankheiten. Gastroenterologia (Basel) 97, 293 (1962).Google Scholar
  6. Bickel, H.: Vortr. X. Internat. Pädiatr. Kongr. 1962.Google Scholar
  7. Bickel, H.: J. Gerhard, and E. M. Hickmann: Influence of phenylalanine intake on phenylketonuria. Lancet 1953 II, 312.Google Scholar
  8. Bickel, H.: J. Gerhard, and E. M. Hickmann, u. W. Grüter: Phenylketonuria mit normalem Intelligenzquotienten. Vergleichende biochemische und psychodiagnostisehe Untersuchungen von zwei etwa gleichaltrigen Mädchen. Z. Kinderheilk. 79, 509 (1957).PubMedGoogle Scholar
  9. Brimblecombe, F. S. W., J. D. Blainey, M. E. E. Stoneman and B. S. B. Wood: Dietary and biochemical control of phenylketonuria. Brit. med. J. 23, 793 (1961).Google Scholar
  10. Crome, L., V. Tymms, and L. I. Woolf: A chemical investigation of the defects of myelination in Phenylketonurie. J. Neurol. Neurosurg. Psychiat. 25, 143 (1962.PubMedGoogle Scholar
  11. Dancis, J., and M. E. Balis: A possible mechanism for disturbance in tyrosine metabolism in phenylpyruvic oligophrenia. Pediatrics 15, 13 (1955).Google Scholar
  12. Fellmann, J. H.: Inhibition of dihydroxy phenylalanine decarboxylase by aromatic acids associated with phenylpyruvic oligophrenia. Proc. Sox. exp. Biol. (N.Y.) 93, 413 (1956).Google Scholar
  13. Fölling, A.: Über Ausscheidung von Phenylbrenztraubensäure in dem Harn als Stoffwechselanomalie in Verbindung mit Imbezillität. Hoppe-Seylers Z. physiol. Chem. 227, 169 (1934).Google Scholar
  14. Fölling, A. O. L. Mohr and L. Kuud: Oligophrenia phenylpyruvica. A recessiv syndrome in man. Oslo: Dybwad 1945.Google Scholar
  15. Fois, A., C. Rosenberg, and F. A. Gibbs: The electroencephalogram in phenylpyruvic oligophrenia. Electroenceph. clin. Neurophysiol. 7, 569 (1955).PubMedGoogle Scholar
  16. Friedman, A., and A. Levinsson: Mirror movements in a case of phenylpyruvic oligophrenia. J. Pediat. 44, 553 (1954).PubMedGoogle Scholar
  17. Gibbs, N. K., and L. I. Woolf: Test for phenylketonuria. Brit. med. J. 1959 I, 532.Google Scholar
  18. Guthrie, P.D.: Blood screening for phenylketonuria. J. Amer. med. Ass. 178, 863 (1961).Google Scholar
  19. Hanson, A.: Inhibition of brain glutamic acid decarboxylase by phenylalanine metabolites. Naturwissenschaften 45, 423 (1958).Google Scholar
  20. Himwich, H. E., and J. F. Fazekas: Cerebral arteriovenous oxygen differences. II. Mental deficiency. Arch. Neurol. Psychiat. (Chic.) 51, 73 (1944).Google Scholar
  21. Horner, F. A., C. W. Steamer, L. L. Alejandrino, L. H. Keed, and F. Ibbot: Termination of dietary treatment of phenylketonuria. New Engl. J. Med. 266, 79 (1962).PubMedGoogle Scholar
  22. Hsia, D. Y., V. W. Driscoll, W. Troll, and W. E. Knox: Detection by phenylalanine tolerance tests of heterozygous carriers of Phenylketonurie. (Nature Lond.) 178, 1239 (1956).PubMedGoogle Scholar
  23. Hsia, D. Y., V. W. Driscoll, W. Troll, and W. E. Knox, W.E. Knox, K. V. Quinn, and E.S. Paine: A one-year controlled study of the effect of low-phenylalanine diet on phenylketonuria. Pediatrics 21, 178 (1958).PubMedGoogle Scholar
  24. Jervis, G. A.: Phenylpyruvic oligophrenia, introductory study of 50 cases of mental deficients associated with excretion of phenylpyruvic acid. Arch. Neurol. Psychiat. (Chic.) 38, 944 (1937).Google Scholar
  25. Jervis, G. A.: Genetics of phenylpyruvic oligophrenia: A contribution to study of influence of heredity on mental defect. J. ment. Sci. 85, 719 (1939).Google Scholar
  26. Jervis, G. A.: Detection of heterozygotes for phenylketonuria. Clin. chim. Acta 5, 47 (1960).Google Scholar
  27. Knox, W. E.: Evaluation of treatment of phenylketonuria with diets low in phenylalanine. Pediatrics 26, 1 (1960).PubMedGoogle Scholar
  28. La Du, B. N., and P. J. Michael: An enzymatic spectrophotometric method for the determination of phenylalanine in blood. J. Lab. clin. Med. 55, 491 (1960).Google Scholar
  29. Linneweh, F., u. M. Ehrlich: Zur Pathogenese des Schwachsinns bei Phenylketonuria. Klin. Wschr. 40, 225 (1962).PubMedGoogle Scholar
  30. Linneweh, F., u. M. Ehrlich, E. H. Graul u. H. Hundeshagen: Über den Aminosäuren-Transport bei phenylketon-urischer Oligophrenie. Klin. Wschr. 41, 253 (1963).Google Scholar
  31. Mabry, C. C., Th. L. Nelson, and F. A. Horner: Occult phenylketonuria. Clin. Pediat. 1, 82 (1962).PubMedGoogle Scholar
  32. Meister, A.: Phenylpyruvic oligophrenia. Pediatrics 21, 1021 (1958).PubMedGoogle Scholar
  33. Meregalli, P., e P. Laricchia Beretta: Contributo alio studio genetico delia oligofrenia fenilpiruvica. Biv. sper. Freniat. 78, 631 (1954).Google Scholar
  34. Meulenman, O.: Phenylpyruvic acid in urine. Clin. chim. Acta 5, 48 (1960).Google Scholar
  35. Nadler, H., and D. Y. Y. Hsia: Epinephrine metabolism in phenylketonuria. Proc. Soc. exp. Biol. (N.Y.) 107, 721 (1961).Google Scholar
  36. Neame, K. D.: Phenylalanine as inhibitor of transport of amino acid in brain. Nature (Lond.) 192, 173 (1961).Google Scholar
  37. Paine, K. S.: The variability in manifestations of untreated patient with phenylketonuria (phenylpyruvic aciduria). Pediatrics 20, 290 (1957).PubMedGoogle Scholar
  38. Paore, C. M. B., M. Sandler, and E. S. Stagey: The relationship between decreased 5-hydr-oxy-indole metabolism and mental defect in phenylketonuria. Arch. Dis. Childh. 34, 422 (1959).Google Scholar
  39. Partington, M. W.: The early symptoms of phenylketonuria. Pediatrics 27, 465 (1961).PubMedGoogle Scholar
  40. Penrose, L. S.: Two cases of phenylpyruvic amentia. Lancet 1985 I, 23.Google Scholar
  41. Penrose, L. S. Phenylketonuria: A problem in eugenics. Lancet 1946I, 949.Google Scholar
  42. Penrose, L. S., and J. H. Quastel: Metabolic studies in phenylketonuria. Biochem. J. 81, 266 (1937).Google Scholar
  43. Ehein, M., et B. Stoeber: Conservation des urines contenant de l’acide phenylpyruvique. C. Rend. Soc. biol. (Paris) 3, 867(1936).Google Scholar
  44. Scheele, C., and H. K. Berry: Comparison of serum phenylalanine levels with growth in Guthrie’s inhibition assay in newborn infant. J. Pediat. 61, 610 (1962).Google Scholar
  45. Schreier, K., u. H. Flaig: Über die Ausscheidung von Indolbrenztraubensäure im Urin von Gesunden und Patienten mit Föllingseher Krankheit. Klin. Wschr. 84, 1213 (1956).Google Scholar
  46. Ströder, J., u. E. Geisler: Der Einfluß von Fruktose auf die Phenylbrenztraubensäure-ausscheidung bei Oligophrenia phenylpyru-vica. Klin. Wschr. 85, 730 (1957).Google Scholar
  47. Tashian, K. E.: Phenylpyruvic acid as a possible precursor of o-hydroxyphenylacetic acid in man. Science 129, 1553 (1959).PubMedGoogle Scholar
  48. Tashian, K. E.: Inhibition of brain glutamic acid decarboxylase by phenylalanine, valine, and leucine derivates. Metabolism 10, 391 (1961).Google Scholar
  49. Udenfriend, S., and S. P. Bessman: The hydr oxylation of phenylalanine and antipyrine in phenylpyruvic oligophrenia. J. biol. Chem. 208, 961 (1953).Google Scholar
  50. Udenfriend, S., and S. P. Bessman, and J. E. Cooper: Assay of 1-phenylalanine as phenylethylamine after enzymatic decarboxylation, application to isotope study. J. biol. Chem. 208, 953 (1953).Google Scholar
  51. Wallace, H. W., K. Moldave, and A. Meister: Studies on conversion of phenylalanine to tyrosine in phenylpyruvic oligophrenia. Proc. Soc. exp. Biol. (N.Y.) 94, 632 (1957).Google Scholar
  52. Wright, S.W., and G. Tarjan: Phenylketonuria. Amer. J. Dis. Child. 98, 405 (1957).Google Scholar

Übersichtsarbeiten

  1. O’Bien, W. M., B. N. La Du, and J. J. Bunim: Biochemical, pathologic and clinical aspects of aleaptomiria, ochronosis and arthropathy. Amer. J. Med. 34, 813 (1963).Google Scholar
  2. Schreier, K.: Handbuch der inneren Medizin, Bd. VII/2. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  3. Schreier, K.: Die angeborenen Stoffwechselanomalien. Stuttgart: Georg Thieme 1963.Google Scholar

Einzelarbeiten

  1. Abe, Y., N. Oshima, E. Hatanaka, T. Amatoko, and E. Hirohata: Thirteen cases of alkaptonuria from one family tree with special reference to osteo-arthrosis alkaptonuria. J. Bone Jt Surg. 42, 817 (1960).Google Scholar
  2. Albrecht, W.: Beitrag zur Alkaptonurie im Kindesalter. Arch. Kinderheilk. 148, 51 (1954).PubMedGoogle Scholar
  3. Anderson, B.: Corneal and conjunctival pigmentation among workers engaded in manufacture of hydroquinone. Arch. Ophthal. 38, 812 (1947).PubMedGoogle Scholar
  4. Armstrong, G. G.: „Alkapton“ in urine. Dublin J. med. Sci. 73, 53 (1882).Google Scholar
  5. Babel, J., F. Bamater, B. Courvoisier, A. Franceschetti, D. Klein et A. Lapiné: Troubles familiau du métabolisme des acides aminés (alcaptonurie, Oligophrenie, phenyl-pyruvique, cataracte congénitale dans une même famille). Schweitz. med. Wschr. 90, 863 (1960).Google Scholar
  6. Boedeker, C.: Das Alkapton; ein Beitrag zur Frage: Welche Stoffe des Harns können aus einer alkalischen Kupferoxydlösung Kupfer -oxydul reducierenf Ann. Chem. Pharmacol. 117, 98 (1861).Google Scholar
  7. Coodlet, E. L., and A. J. Greco: Clinical aspects of ochronosis; with report of a case. Amer. J. Med. 8, 816 (1950).Google Scholar
  8. Ebstein, W., u. J. Müller: Brenzkatechin in dem Urin eines Kindes. Virchows Arch. path. Anat. 62, 554 (1875).Google Scholar
  9. Eisenberg, H.: Alkaptonuria, ochronosis, arthritis and ruptured intervertebral disc complicated by homologous serum reaction. Arch. intern. Med. 86, 79 (1950).Google Scholar
  10. Fišer-Herman, M., and M. Petrovacki: Reduzierende Substanzen aus alkaptonurischem Harn. Clin. chim. Acta 3, 248 (1958).PubMedGoogle Scholar
  11. Greilung, H.: Beitrag zur Entstehung der Ochronose bei Alkaptonurie. Klin. Wschr. 35, 889 (1957).Google Scholar
  12. Jantke, E.: Ein Beitrag zur sogenannten endogenen Ochronose des Menschen. Mitt. Grenz -geb. Med. Chir. 26, 617 (1913).Google Scholar
  13. Katsch, G.: Eine Alkaptonurikerfamilie. Münch. med. Wschr. 65, 1337 (1918).Google Scholar
  14. Khachadurian, A., and K. Abu Feisal: Alkaptonuria. Eeport of a family with seven cases appearing in four successive generations, with metabolic studies in one patient. J. chron.Dis. 7, 455 (1958).PubMedGoogle Scholar
  15. Kirk, E.: On a new acid found in human urine which darkens with alkalies (alcaptonuria). J. Anat. (Paris) 23, 69 (1888/89).Google Scholar
  16. La Du, B. N.: Alcaptonuria. In: The metabolic basis of inherited disease, p. 394, edit, by J. B. Stanbury, J. B. Wyngaarden and D. S. Fredrickson. New York: McGraw-Hill Book Co. 1960.Google Scholar
  17. Lusitanos, Z.: Zit. bei A.E. Garrod, in: in born errors of metabolism, 2. Aufl. London: H.Frowde 1923.Google Scholar
  18. Marcet, A.: Account of a singular variety of urine, which turned black soon after being discharged; with some particulars respecting its chemical properties. Trans, roy. med.-chir. Soc. Glasg. 12, 37 (1823).Google Scholar
  19. Marshall, D.: Alkaptonuria. U.S.armed Forces Med. J. 9, 911 (1958).PubMedGoogle Scholar
  20. Milch, R. A.: Inheritance of alcaptonuria. Bull. Hosp. Jt Dis. (N.Y.) 18, 103 (1957).Google Scholar
  21. Neuberger, A., C. Rimington, and J. M. G. Wilson: Studies on alkaptonuria. II. Investigations of a case of human alcaptonuria. Biochem. J. 41, 438 (1947).Google Scholar
  22. Schenck, J.: Urine nigra in sanis quibusdam. In: Observationes Medicae, lib. III, p. 558. Frankfurt 1609.Google Scholar
  23. Schreier, K., u. H. Plückthun: Über die Al-kaptonurie: eine klinische und physiologische-chemische Studie. Z. Kinderheilk. 71, 462 (1952).PubMedGoogle Scholar
  24. Scribonius, G. A.: De inspectione urinarum, p. 50. Lemgo, Germany 1584.Google Scholar
  25. Seegmiller, J. E., V. G. Zannoni, L. Laster, and B. N. la Du: An enzymatic spectro-photometric method for the determination of homogentisic acid in plasma and urine. J. biol. Chem. 236, 774 (1961).PubMedGoogle Scholar
  26. Simon, G., and P. A. Zorab: The radiographic changes in alkaptonuric arthritis: a report on three cases (one an Egyptian mummy). Brit. J. Radiol. 34, 384 (1961).Google Scholar
  27. Siťaj, Š., and T. Urbanek: Alkaptonuria. Rev. czech. Med. 2, 288 (1956).PubMedGoogle Scholar
  28. Skinsnes, O. K.: Generalized ochronosis: report of an instance in which it was misdiagnosed as melanosarcoma, with resultant enucleation of an eye. Arch. Path. 45, 552 (1948).PubMedGoogle Scholar
  29. Sugar, H. S., and W. W. Waddell: Ochronosis-like pigmentation associated with the use of atebrine. Illinois med. J. 89, 234 (1946).Google Scholar
  30. Sutro, C. J., and M.E. Anderson: Alkaptonuria arthritis: cause for free intra-articular bodies. Surgery 22, 120 (1947).PubMedGoogle Scholar
  31. Thomas, A. E., and M. A. Gisburn: Exogenous ochronosis and myxodema from resorcinol. Brit. J. Derm. 73, 378 (1961).PubMedGoogle Scholar
  32. Virchow, R.: Ein Fall von allgemeiner Ochronose der Knorpel und knorpelähnlichen Theile. Virchows Arch. path. Anat. 37, 212 (1866).Google Scholar
  33. Wells, C., and B. M. Maxwell: Alkaptonuria in an Egyptian mummy. Brit. J. Radiol. 35, 679 (1962).PubMedGoogle Scholar
  34. Wolkow, M., u. E. Baumann: Über das Wesen der Alkaptonurie. Hoppe-Seylers Z. physiol. Chem. 15, 228 (1891).Google Scholar
  35. Zannoni, V. G., J. E. Seegmiller, and B. N. la Du: Nature of the defect in alcaptonuria. Nature (Lond.) 193, 952 (1962).Google Scholar

Zusammenfassende Arbeiten

  1. Pearson, K., E. Nettleship, and C. H. Usher: Monograph on albinism in man. London: Dulau 1911–1913.Google Scholar
  2. Schreier, K.: Albinismus. In: Handbuch der inneren Medizin, Bd. VII/2. Berlin: Sprmger 1955.Google Scholar
  3. Schreier, K.: Die angeborenen Stoffwechselanomalien. Stuttgart: Georg Thieme 1963.Google Scholar
  4. Schultze-Jena, B. S.: Erbliche Fermentdefekte des Aminosäurenstoffwechsels. Ergebn. inn. Med. Kinderheilk. 18, 1 (1962).PubMedGoogle Scholar

Einzelarbeiten

  1. Becker jr., S. W., T. B. Fitzpatrick, and H. Montgomery: Human melanogenesis: Cytology and histology of pigment cells (melano-chondronytes). Arch. Derm. Syph. (Chic.) 65, 511 (1952).Google Scholar
  2. Beckman, A. S.: Albinism in negro children. J. genet. Psychol. 69, 199 (1949).Google Scholar
  3. Bloch, B.: Eigentümliche bisher nicht beschriebene Pigmentaffektion (Incontinentia pigmenti). Schweiz, med. Wschr. 56, 404 (1926).Google Scholar
  4. Chediak, M.: Nouvelle anomalie leucocytaire de caractère constitutionel et familial. Rev. Hémat. 7, 362 (1952).PubMedGoogle Scholar
  5. Edmunds, E. T.: Vision of albinos. Arch. Ophthal. 42, 755 (1949).PubMedGoogle Scholar
  6. Fitzpatrick, T. B.: Human melanogenesis. Arch. Derm. Syph. (Chic.) 65, 379 (1952).Google Scholar
  7. Higashi, O.: Congenital gigantism of peroxidase granules. Tohoku J. exp. Med. 59, 315 (1954).PubMedGoogle Scholar
  8. Hsia, D.Y. Y.: Inborn errors of metabolism. Chicago: Health 1959.Google Scholar
  9. Ktesias: In herodoti et ctesiae opera et fragmenta, vol.11, S. 874. Lenigoviae: Borheck 1781.Google Scholar
  10. Mende, J.: Über eine Familie hereditär-degenerativer Taubstummer mit mongolischem Einschlag und teilweisen Leukismen der Haut und Haare. Arch. Kinderheilk. 79, 214 (1926).Google Scholar
  11. Pickford, B. W.: Colour vision of three albinos. Nature (Lond.) 181, 361 (1958).Google Scholar
  12. Plinius = Plinius: Hist. Nat. Lib. VII.Google Scholar
  13. Sulzberger, M. B.: Über eine bisher nicht beschriebene congenitale Pigmentanomalie (Incontinentia pigmenti). Arch. Derm. Syph. (Berl.) 154, 19 (1927).Google Scholar
  14. Verschuer, O.V.: Genetik des Menschen. In: Lehrbuch der Humangenetik. München u. Berlin: Urban & Schwarzenberg 1959.Google Scholar
  15. Waardenburg, P. J.: New syndrome combining developmental anomalies of eyelids, eyebrowns and nose root with pigmentary defects of iris and head hairs and with congenital deafiness. Amer. J. human. Genet. 3, 195 (1951).Google Scholar
  16. Hutchinson, J. H., and W. Hamilton: Familial dysautonomia in two sibling. Lancet 1962 I, 1216.Google Scholar
  17. Eiley, C.M.: Familial dysautonomia. Advanc. Pediat. 9, 157 (1957).Google Scholar
  18. Smith, A. A., and J. Danois: Kesponse to intradermal histamine in familial dysautonomia-a diagnostic test. J. Pediat. 63, 889 (1963).PubMedGoogle Scholar
  19. Smith, A. A., J. Danois, T. Taylor, and S. B. Wortis: Abnormal catechol amine metabolism in familial dysautonomia. New Engl. J. Med. 268, 705 (1963).PubMedGoogle Scholar
  20. Auerbach, V. H., A. M. Digeorge, K. C. Baldridge, Ch. D. Tourtellotte, and M. P. Brigham: Histidinemia. A deficiency in histi-dase resulting in the urinary excretion of histidine and of imidazole pyruvic acid. J. Pediat. 4, 487 (1962).Google Scholar
  21. Bessman, S.P., and E. Baldwin: Imidazole aminoaciduria in cerebromacular degeneration. Science 185, 789 (1962).Google Scholar
  22. Davies, H. E., and J. Robinson: A case of histi-dinaemia. Arch. Dis. Childh. 38, 80 (1963).Google Scholar
  23. Ghadimi, H., M. W. Partington, and A. Hunter: A familial disturbance of histidine metabolism. New Engl. J. Med. 265, 221 (1961).PubMedGoogle Scholar
  24. La Du, B. N., R. Howell, G. A. Jacobt, J. E. Seegmiller, E. K. Sober, V. G. Zannoni, J. P. Canby and L. K. Ziegler: Clinical and biochemical studies on two cases of histidinemia. Pediatrics 32, 216 (1963).Google Scholar
  25. Cochrane, W. A.: Studies in the relationship of amino acids to infantile hypoglycemia. J. Dis. Child. 99, 476 (1960).Google Scholar
  26. Crome, L., G. Dutton, and C. F. Boss: Maple syrup urine disease. J. Path. Bact. 81, 379 (1961).PubMedGoogle Scholar
  27. Dancis, J., J. Hutzler, and M. Levitz: Metabolism of the white blood cells in maple syrup disease. Biochem. biophys. Acta (Amst.) 44, 342 (1960).Google Scholar
  28. Dacis, J., J. Hutzler, M. Levitz Levitz, and E. G. Westall: Maple syrup urine disease branched chain keto-aciduria. Pediatrics 25, 72 (1960).Google Scholar
  29. Davison, A. N., and M. Sandler: Inhibition of 5-hydroxytryptophan decarboxylase by phenylalanine metabolites. Nature (Lond.) 181, 186 (1958).Google Scholar
  30. Dent, CH., and K. G. Westall: Studies in maple syrup urine disease. Arch. Dis. Childh. 36, 259 (1961).PubMedGoogle Scholar
  31. Fellmann, H. J.: Inhibition of dihydroxy phenylalanine decarboxylase by aromatic acids associated with phenylpyruvic oligophrenia. Proc. Soc. exp. Biol. (N.Y.) 93, 413 (1956).Google Scholar
  32. Gunsalus, I. C.: Group transfer and acyl-gene-rating functions of lipoic acid derivates. In: W. D. McElrot and B. Glass (eds), Mechanism of enzyme action, pp. 545–580. Baltimore: Johns Hopkins Press 1954.Google Scholar
  33. Hartmann, W., u. K. Schreier: Leucinempfinliche Hypoglykämie. Mschr. Kinderheilk. 109, 507 (1961).PubMedGoogle Scholar
  34. Holtjr., L. E.: Vortrag anl. 60. Tagg der Ges. für Kinderheilkunde, Heidelberg 1961. Mschr. Kinderheilk. 110, 165 (1961).Google Scholar
  35. Holtjr., L. E., S. E. Snyderman, J. Danois, and P. M. Norton: The treatment of a case of maple syrup urine disease. Fed. Proc. 19, 10 (1960).Google Scholar
  36. Koike, M., P. C. Shah, and L. J. Reed: Alpha-keto acid dehydrogenation complexes. III. Purification and properties of dihydrolipoic dehydrogenase of E. Coli. J. biol. Chem. 235, 1939 (1960).Google Scholar
  37. Linneweh, F., u. M. Ehrlich: Heterozygoten-Test für die Ahornsirupkrankheit. (Maple syrup urine disease.) Klin. Wschr. 41, 255 (1963).Google Scholar
  38. McKenzie, D. Y., and L. I. Woolf: Maple syrup urine disease: an inborn error of the metabolism of valine, leucine and isoleucine associated with gross mental deficiency. Brit. med. J. 1959 II, 90.Google Scholar
  39. Menkes, J. H.: Maple syrup disease: isolation and identification of organic acids in the urine. Pediatrics 23, 348 (1959).PubMedGoogle Scholar
  40. Menkes, J. H., P. L. Hurst, and J. M. Craig: A new syndrome: progressive familial infantile cerebral dysfunction associated with an unusual urinary substance. Pediatrics 14, 462 (1954).PubMedGoogle Scholar
  41. Müller, W., u. K. Schreier: Die Ahornsirup-krankheit. Dtsch. med. Wschr. 87, 2479 (1962).Google Scholar
  42. Sanadi, D. E., M. Langley, and P. White: On the mechanism of oxidative decarboxylation of alpha-keto-acids. Biochim. biophys. Acta 29, 218 (1958).PubMedGoogle Scholar
  43. Schreier, K.: Die angeborenen Stoffwechselanomalien. Stuttgart: Georg Thieme 1963.Google Scholar
  44. Silberman, J., J. Dancis, and I. Feigin: Neuro-pathological observations in maple syrup urine disease: branched-chain ketoaciduria. Arch. Neurol. (Chic.) 5, 351 (1961).Google Scholar
  45. Smith, J. A., and L. B. Strang: An inborn error of metabolism with the urinary excretion of hydroxyacids, ketoacids and aminoacids. Lancet 1958 II, 1334.Google Scholar
  46. Tashian, E. E.: Inhibition of brain glutamic acids decarboxylase by phenylalanine, valine and leucine derivatives. Metabolism 10, 393 (1961).PubMedGoogle Scholar
  47. Westall, K. G.: Persönliche Mitteilung.Google Scholar
  48. Westall, K. G., J. Dancis, and M. Levitz: Maple syrup urine disease. Fed. Proc. 17, 334 (1958).Google Scholar
  49. Woody, N. C., H. B. Woody, and Th. D. Tiden: Maple syrup urine disease in negro infant. Amer. J. Dis. Child. 105, 381 (1963).PubMedGoogle Scholar
  50. Childs, B., W. L. Nyhan, M. Borden, L. Bard, and K. E. Cooke: Idiopathic hyperglycinemia and hyperglyeinuria: a new disorder of amino acid metabolism. I und II. Pediatrics 27, 522, 539 (1961).PubMedGoogle Scholar
  51. Nyham, L. W., J. J. Chisolm and E. O. Edwards: Idiopathic hyperglycinemia. III. Report of a second case. J. Pediat. 62, 540 (1963).Google Scholar
  52. Nyhan, W. L., and B. Childs: Hyperglycinemia: The turnover rate of glycine, pool size, and the formation of serine. Amer. J. Dis. Child. 104, 509 (1962).Google Scholar
  53. Schreier, K., W. Müller u. P. Diezel: Grlyci-nose. (Im Druck.)Google Scholar
  54. Burke, E.G.: Oxalosis. Mod. Proibi. Pädiat. 8, 314 (1957).Google Scholar
  55. Durand, P.: Oxalosis. In: F. Linneweh, Erbliche Stoffwechselkrankheiten. S. 608: Urban & Schwarzenberg 1962.Google Scholar
  56. Frederick, E. W., M. T. Eabkin, K. H. Eichie and L. H. Smith: Studies on primary hyperoxaluria. New Engl. J. Med. 269, 821 (1963).PubMedGoogle Scholar
  57. Jeghers, H., and E. Murphy: Practical aspects of oxalate metabolism. New Engl. J. Med. 233, 208 (1945).Google Scholar
  58. Lepoutre, C.: Calcus multiples chez un enfant; infiltration du parenchyme renal par des depots cristallins. J. Urol. méd. chir. 20, 424 (1925).Google Scholar
  59. Schreier, K.: Die Oxalurie und Oxalose. In: Handbuch der inneren Medizin, Bd. 7/2. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  60. Schreier, K. Oxalose. In: Die angeborenen Stoffwechselanomalien. Stuttgart: Georg Thieme 1963.Google Scholar
  61. Scowen, E. F., J. C. Crawhall, and E. W. E. Watts: Incorporation of carboxylcarbon atom of glycine into oxalate in a case of primary hyperoxaluria. Lancet 1958 II, 300.Google Scholar
  62. Shepard, T. H., E. G. Krebs, L. W. Lee, and M.L. Johnson: Primary hyperoxaluria III. Nutritional and metabolic studies in a patient. Pediatrics 25, 1008 (1960).PubMedGoogle Scholar
  63. Carson, N. A. J., D. C. Cusworth, C. E. Dent, C. M. B. Field, D. W. Neill and R. G. Wes-tall: Homocystinuria: A new inborn error of metabolism associated with mental deficiency. Arch. Dis. Childh. 38, 425 (1963).PubMedGoogle Scholar
  64. Field, C. M. B., N. A. J. Carson, D. C. Cusworth, C. E. Dent, and D.W. Neill: Homocystinuria. A new disorder of metabolism. Vortrag X. Internat. Pädiaterkongr. Lissabon 1962.Google Scholar
  65. Binkley, F., G. M. Christensen, and W. M. Jensen: Pyridoxine and transfer of sulfur. J. biol. Chem. 194, 109 (1952).PubMedGoogle Scholar
  66. Frimpter, G. W.: Disulfide of L-cysteine and L-homoeystein ein urine of patiens with cystinuria. J. biol. Chem. 236, PC 51—PC 53 (1961).Google Scholar
  67. Frimpter, G. W., A. Haymovitz, and M. Horwith: Cystathioninuria. New. Engl. J. Med. 268, 333 (1963).PubMedGoogle Scholar
  68. Harris, H., L. S. Penrose, and D. H. Thomas: Cystathioninuria. Ann. hum. Genet. 23, 442 (1959).PubMedGoogle Scholar
  69. Hope, D. B.: l-Cystathionine in urine of pyridoxine-deficient rats. Biochem. J. 66,486(1957).PubMedGoogle Scholar
  70. Tallan, H. H., S. Moore, and W. H. Stein: l-Cystathionine in human brain. J. biol. Chem. 230, 707 (1958).PubMedGoogle Scholar
  71. Westall, R. G.: Persönliche Mitteilung.Google Scholar
  72. Asatoor, A. M., J. Craske, D. E. London, and M. Milne: Indole production in hartnnp disease. Lancet 1963 I, 126.Google Scholar
  73. Baron, D. C., C. E. Dent, H. Harris, E. W. Hart, J.B. Jepson: Hereditary pellagra-like skin rash with temporary cerebellar ataxia, constant renal amino aciduria and other bizarre biochemical features. Lancet 1956 II, 421.Google Scholar
  74. Dent, C. E.: Hartnup disease: an inborn error of metabolism. Arch. Dis. Childh. 23, 363 (1957).Google Scholar
  75. Evered, D. E.: The excretion of amino acids by the human: A quantitative study ionexchange chromatography. Biochem. J. 62, 416 (1956).PubMedGoogle Scholar
  76. Hooft, C., P. de Laet, J. Timmermans et J. Snoeck: La maladie de Hartnup. Acta paeiat. belg. 16, 281 (1962).Google Scholar
  77. Jepson, J. B., and M. J. Spiro: Hartnup-disease. In: The metabolic basis of inherited disease. New York: McGraw-Hill Book Co. 1960.Google Scholar
  78. Jonxis, J. H.: Oligophrenia phenylpyruvica en de Hartnupziekte. Ned. T. Geneesk. 101, 569 (1957).PubMedGoogle Scholar
  79. Mellman, W. J., L. A. Barness, T. A. Tedesco and D. Besselman: Indolylacroyl glycine excretion in a family with mental retardation. Clin. chim. Acta 8, 843 (1963).PubMedGoogle Scholar
  80. Milne, M. D., M. A. Crawford, C. B. Griao, and L. Loughridge: The metabolic abnormality of Hartnup disease. Biochem. J. 72, 30 (1959).Google Scholar
  81. Weters, H., u. H. Bickel: Photodermatose mit Aminoacidurie, Indolaceturie und cerebralen Manifestationen. Klin. Wschr. 36, 893 (1958).Google Scholar
  82. Cuthworth, D. C., and C. E. Dent: Eenal clearance of amino acids in normal adults and in patients with aminoaciduria. Biochem. J. J. 74, 550 (1960).Google Scholar
  83. Levin, B. H., M. M. Mackat, and V. G. Oberholzer: Argininosuccinic aciduria. Arch. Dis. Childh. 190, 622 (1961).Google Scholar
  84. McMuray, W.C., J. C. Bathbun, F. Mohyuddin and S. J. Koegler: Citrullinuria. Pediatrics 32, 347 (1963).Google Scholar
  85. McMuray, W. C., F. Mohyuddin, K. J. Bossiter, J. C. Bathbun, G. H. Valentine, S. J. Koegler, and D. E. Zarfas: Citrullinuria. Lancet 1962I, 138.Google Scholar
  86. Ratner, S., H. Morell, and E. Carvalho: Enzymes of arginine metabolism in brain. Arch. biochem. Biophys. 91, 279 (1960).Google Scholar
  87. Russell, A., B. Levtn, V. G. Oberholzer, and L. Sineclatr: Hyperammonemia. Lancet 1962 II, 699.Google Scholar
  88. Tomlinson, S., and B. G. Westall: Arginino-succinase activity in brain tissue. Nature (Lond.) 188, 235 (1960).Google Scholar
  89. Wallis, K., S. Beer and J. Fischl: A family affected by arginino-succinic aciduria. Helv. paediat. Acta 18, 339 (1963).Google Scholar
  90. Westall, R. G.: Argininosuccinuric aciduria: Identification and relation of the abnormal metabolite in a newly described form of mental disease with some preliminary metabolic studies. Biochem. J. 77, 135 (1960).PubMedGoogle Scholar
  91. Abderhalden, E.: Familiäre Cystindiathese. Hoppe-Seylers physiol. Chem. 38, 557 (1903).Google Scholar
  92. Bickel, H.: Die Entwicklung der biochemischen Läsion bei der Lignac-Fanconi-Krankheit. Helv. paediat. Acta 10, 259 (1955).PubMedGoogle Scholar
  93. Bickel, H., W.O. Smallwood, J. M. Smeller, and E. M. Hickmans: Cystinestorage disease with aminoaciduria and dwarfism (Lignac-Fanconi disease); clinical description, factual analysis and treatment of Lignac-Fanconi disease. Acta paediat. (Uppsala), Suppl. 90, 42, 27 (1952).Google Scholar
  94. Bürki, E., u. M. Kohner: Ein seltener Fall von kristalliner Hornhautdegeneration. Ophthal -mologica (Basel) 129, 211 (1955).Google Scholar
  95. Cogan, D. G., T. Kuwabara, C. Hurblut jr., and V. McMurray: Further observation on cystinosis in the adult. J. Amer. med. Ass. 166, 1725 (1958).Google Scholar
  96. Cogan, D. GR., T. Kuwvbara, J. Knoshita, L. Sheehan, and L. Merola: Cystinosis in an adult. J. Amer. med. Ass. 164, 4 (1957).Google Scholar
  97. Lignac, G.O.E.: Über Krankheiten mit und durch Cystinablagerungen in verschiedenen Geweben. Krkh.-Forsch. 2, 43 (1926).Google Scholar
  98. Linneweh, F.: Zystinose. In: F. Linneweh, Erbliche Stoffwechselkrankheiten. München u. Berlin: Urban & Schwarzenberg 1962.Google Scholar
  99. Schreier, K.: Zystinspeicherkrankheit (Zystinose). In: Die angeborenen Stoffwechselano-malien. Stuttgart: Georg Thieme 1963.Google Scholar
  100. Weber, H., u. W. Hagge: Über die erfolgreiche Behandlung der Zystinose mit einem Anaboli-cum. Arch. Kinderheilk. 168, 110 (1963).PubMedGoogle Scholar
  101. Ben-Ishay, D., F. Dreyfuss, and T.D. Ullman: Fanconi syndrome with, hypouricemia in an adult. Amer. J. Med. 8, 793 (1961).Google Scholar
  102. Dabmady, E. M., and F. Stranack: Microdissection of the nephron in disease. Brit. med. Bull. 18, 21 (1957).Google Scholar
  103. DeToni, G.: La clinica dei nanismi renali. Minerva pediat. 7, 1 (1955).Google Scholar
  104. Fanconi, G.: Der frühinfantile nephrotisch-gly-kosurische Zwergwuchs mit hypophosphat-ämischer Rachitis. Jb. Kinderheilk. 147, 299 (1936).Google Scholar
  105. Hooft, C., A. Vermassen and J. Herpol: Reversible gluco-amino-phosphaturia in a child with lipoid nephrosis. Helv. paediat. Acta 14, 1 (1959).PubMedGoogle Scholar
  106. Kuhlencordt, F.: Die glucosurische Osteopathie (das sog. Fanconi-Syndrom beim Erwachsenen). Ergebn. inn. Med. Kinderheilk. 9, 622 (1958).PubMedGoogle Scholar
  107. Schreier, K.: DeToni-Debré-Fanconi-Syndrom (Idiopathischer Gluko -Amino -Phosphat — Diabetes). In: Die angeborenen Stoffwechselanomalien. Stuttgart: Georg Thieme 1963.Google Scholar
  108. Stanbury, S. W.: Some aspects of disordered renal tubular function. Advanc, intern. Med. 9, 231 (1958).Google Scholar
  109. Wilson, D. R., and E. R. Yendt: Treatment of the adult Fanconi syndrome with oral phosphate supplements and alkali. Amer. J. Med. 35, 487 (1963).PubMedGoogle Scholar
  110. Bickel, H.: Harnsteinprophylaxe bei Cystinurie. Urologe 1, 288 (1962).PubMedGoogle Scholar
  111. Crawhall, J. C., E.F. Scowen, and E. W. E. Watts: Effect of penicillamine on cystin -uria. Brit. med. J. 1963 II, 588.Google Scholar
  112. Dent, C.E., and G.A. Rose: Amino acid metabolism in cystinuria. Quart. J. Med. 20, 205 (1951).PubMedGoogle Scholar
  113. Ehrlich, M.: Zystinurie. In: F. Linneweh, Erbliche Stoffwechselkrankheiten. München u. Berlin: Urban & Schwarzenberg 1962.Google Scholar
  114. Fanconi, G.: Vortrag 60. Tagg der Dtsch. Ges. für Kinderheilkunde. Heidelberg 1961.Google Scholar
  115. Frimpter, G. W., M. Horwith, E. Furth, E. E. Fellows, D.D. Thompson, A. Bass and N. Schechter: Inulin and endogenous amino acid renal clearances in cystinuria: evidence for tubular secretion. J. clin. Invert. 41, 281 (1962).Google Scholar
  116. Garrod, A. E.: Inborn errors of metabolism, 2. Aufl. (H.Frowde). London 1923.Google Scholar
  117. Harris, H., and E. B. Eobson: Cystinuria. Amer. J. Med. 22, 774 (1957).PubMedGoogle Scholar
  118. Milne, M. D., A. M. Asatoor, K. W. G. Edwards, and L. W. Loughbridge: The intestinal absorption defect in cystinuria. Gnt 2, 323 (1961).Google Scholar
  119. Schreier, K.: Zystinurie (renale Arginin-Zystin-Lysin-Ornithinurie). In: Die angeborenen Stoffwechselkrankheiten. Stuttgart: Georg Thieme 1963.Google Scholar
  120. Schreier, K.: (2) Die Cystinurie. In: Handbuch der inneren Schreier, K. Medizin, Bd. VII, Teil 2, S. 866. 1955.Google Scholar
  121. Wollaston, L. H.: On cystic oxide. A new species of urinary calculus. Transact. Eoy. Soc. trop. Med. (Lond.) 100, 223 (1810).Google Scholar
  122. Chowebs, I., J. W. Czaczkes, E. N. Ehrenfeld and S. Landau: Familial aminoaciduria in osteogenesis imperfecta. J. Amer. med. Ass. 181, 771 (1962).Google Scholar
  123. Hirsch, W., A. Mex u. F. Vogel: Besonderheiten im Aminosäure-Stoffwechsel bei geistig abnormen Kindern im Vergleich zu Normalpopulationen. Mschr. Kinderheilk. 109, 445 (1961).PubMedGoogle Scholar
  124. Illig, E., u. A. Prader: Primäre Tubulopathien. II. Ein Fall von idiopathischem Gluko-Amino-Phosphat-Diabetes. (De Toni-Debre-Fanconi-Syndrom.) Helv. paediat. Acta 16, 622 (1961).Google Scholar
  125. Luder, J., and W. Sheldon: A familial tubular absorption defect of glucose and amino acids. Arch. Dis. Child. 30, 160 (1955).PubMedGoogle Scholar
  126. Paine, R. S.: Evaluation of familial biochemically determined mental retardation in childrens with special reference to aminoaciduria. New Engl. J. Med. 262, 658 (1960).PubMedGoogle Scholar
  127. Poser, C.M., and L. Bunch: Aminoaciduria in familial mental retardation. Arch. Neurol. (Chic.) 9, 35 (1963).Google Scholar
  128. Prod’Hom, S., et I. Antener: Etude clinique et bilan metabolique phosphocalcique et vit-aminique d’un cas de syndrome de DeToni -Debre-Fanconi. Ann. paediat. (Basel) 196, 11 (1961).Google Scholar
  129. Eowley, P. T., P.S. Mueller, D.M. Watkin and L. E. Rosenberg: Familial growth retardation, renal amino aciduria and cor pulmonale. Amer. J. Med. 31, 187 (1961).Google Scholar
  130. Schafer, I. A., C. E. Scriver and M. L. Efron: Familial hyperprolinemia, cerebral dysfunction and renal anomalies occuring in a family with hereditary nephropathy and deafness. New Engl. J. Med. 267, 51 (1962).PubMedGoogle Scholar
  131. Seakins, J. W. T.: Peptiduria in an unusual bone disorder. Arch. Dis. Childh. 38, 215 (1963).PubMedGoogle Scholar
  132. Summer, G. K.: Oral proline tolerance in osteogenesis imperfecta. Science 134, 1527 (1961).PubMedGoogle Scholar
  133. Thelander, H. E., and E. Imagawa: Amino aciduria, congenital defects and mental retardation. J. Pediat. 49, 123 (1956).PubMedGoogle Scholar
  134. Wallace, I. E., and J. H. Jones: Familial glo-merulo nephritis and amino aciduria. Lancet 1960 I, 941.Google Scholar
  135. Buchanan, D.L., and J. M. Kollins: Lack of correlation between gout and the incorporation of isotopic formate into uric acid. Yale J. Biol. Med. 34, 31 (1961).Google Scholar
  136. Catel, W., u. J. Schmidt: Über familiäre gichtische Diathese in Verbindung mit cerebralen und renalen Symptomen bei einem Kleinkind. Dtsch. med. Wschr. 84, 2145 (1959).PubMedGoogle Scholar
  137. Dent, C. E., and G. R. Philpot: Xanthinuria, an inborn error (or deviation) of metabolism. Lancet 1954I, 182.Google Scholar
  138. Dickinson, C. J., and J. M. Smellie: Xanthinuria. Brit. med. J. 1959 I, 1217.Google Scholar
  139. Fink, K., and R. M. Fink: Some factors influencing excretion of betaaminoisobutyric acid (BAIB). Fed. Proc. 17, 219 (1958).Google Scholar
  140. Gutman, A. B., and T. F. Yu: Gout, a derangement of purine metabolism. Advanc, intern. Med. 5, 27 (1952).Google Scholar
  141. Gutman, A. B., and T. F. Yu: A three-component system for regulation of renal excretion of uric acid in man. Trans. Ass. Amer. Phycns 74, 353 (1961).Google Scholar
  142. Hench, P. S.: Diagnosis and treatment of gout and gouty arthritis. J. Amer. med. Ass. 116, 453 (1951).Google Scholar
  143. Huguley, C. M., J. A. Bain, S. L. Rivers and R. B. Scoggins: Refractory megaloblastic anemia associated with excretion of orotic acid. Blood 14, 615 (1959).PubMedGoogle Scholar
  144. Ichikawa, T.: Xanthine calculi of kidney. J. Urol. (Baltimore) 72, 770 (1954).Google Scholar
  145. Löffler, W., u. E. F. Koller: Die Gicht. In: Handbuch der inneren Medizin, 4. Aufl., Bd.7/2. Berlin: Springer 1955.Google Scholar
  146. Marcet, A.: An essay on the chemical history and medical treatment of calculous disorders. London 1817.Google Scholar
  147. Riley, J. D.: Gout and cerebral palsy in a three-year-old boy. Arch. Dis. Childh. 85, 293 (1960).Google Scholar
  148. Rosenthal, I. M., S. Gaballah and M. E. Rafelson: Gout in infancy manifested by renal failure. Pediatrics 33, 251 (1964).PubMedGoogle Scholar
  149. Seegmiller, J. E., L. Laster, and L. Y. Liddle: Failure to detect consistent overincorporation of glycine 1-C-14into uric acid in primary gout. Metabolism 7, 376 (1958).PubMedGoogle Scholar
  150. Smith, L. H., and M. Lotz: Studies on congenital orotic aciduria: comparison of orotic acid metabolism in microorganisms. J. Lab. clin. Med. 61, 211 (1963).PubMedGoogle Scholar
  151. Stetten, D.: Gout and metabolism. Sci. Amer. 198, 73 (1958).PubMedGoogle Scholar
  152. Talbott, J. H.: Gout. New York: Grune & Stratton 1957.Google Scholar
  153. Weissmann, B., P. A. Bromberg, and A. B. Gutman: The purine bases of human urine. I. Separation and identification. J. biol. Chem. 224, 407 (1957).PubMedGoogle Scholar
  154. Wyngaarden, J. B.: Gout; in the metabolic basis of inherited disease. London: McGraw-Hill Book Co. 1960.Google Scholar
  155. Yu, T. F., L. Berger, and A. B. Gutman Renal function in gout. II. Effect of uric acid loading on renal excretion of uric acid. Amer. J. Med. 33, 829 (1962).PubMedGoogle Scholar
  156. Zöllner, N.: Moderne Gichtprobleme, Ätiologie, Pathogenese, Klinik. Ergebn. inn. Med. Kin-derheilk. 14, 321 (1960).Google Scholar
  157. Aisen, P., J. B. Schorr, A. G. Morell, R. Z. Gold, and I. H. Scheinberg: A rapid screening test for deficiency of plasma ceruloplasmin and its value in the diagnosis of Wilson’s disease. Amer. J. Med. 28, 550 (1960).PubMedGoogle Scholar
  158. Altschul, R., and J.S. Brown: Parathyroid insufficiency in Wilson’s disease. Canad. med. Ass. J. 46, 231 (1942).Google Scholar
  159. Anderson, P. J., and H. Popper: Changes in hepatic structure in Wilson’s disease. Amer. J. Path. 36, 483 (1960).PubMedGoogle Scholar
  160. André, M. J.: Des signes biologiques et des caractères cliniques de la cirrhose Wilsonienne. Leur signification au point de vue de la Physiopathologie de la dégénérescence lenticulaire. (A propos de quatre observations nouvelles.) Rev. belge Sci. méd. 17, 185 (1946).Google Scholar
  161. André, M. J., et L. van Bogaert: L’hérédité dans la dégénérescence hépato-lenticulaire et le problème des rapports intrinsiques de la pseudo-sclérose de Westphal -Strümpell et da la maladie de Wilson. La situation nosologique de 1’,,abdominal-Wilson“ de Kehrer au Scin de la D.H.L. Encéphale 39, 1 (1950).PubMedGoogle Scholar
  162. Arima, M., and T. Kurumada: Genetical studies of Wilson’s disease in childhood. I. Clinical and biochemical analysis of sixteen families. Paediatria Univ. Tokyo No 7, 1 (1962a).Google Scholar
  163. Arima, M., and T. Kurumada: Genetical studies of Wilson’s disease in childhood. II. Mode of inheritance and gene frequency in Japan. Paediatria Univ. Tokyo No 7, 7 (1962b).Google Scholar
  164. Barbeau, A., R. W. Reilly, and J. B. Kirsner: An early defect in Wilson’s syndrome. J. Lab. clin. Med. 54, 786 (1959).Google Scholar
  165. Barnes, S., and E. W. Hurst: Hepato-lenticular degeneration. Brain 48, 279 (1925).Google Scholar
  166. Barnes, S., and E. W. Hurst: A further note on hepato-lenticular degeneration. Brain 49, 36 (1926).Google Scholar
  167. Barnes, S., and E. W. Hurst: Hepato-lenticular degeneration: a final note. Brain 52, 1 (1929).Google Scholar
  168. Bearn, A. G.: Genetic and biochemical aspects of Wilson’s disease. Amer. J. Med. 15, 442 (1953).PubMedGoogle Scholar
  169. Bearn, A. G.: A genetical analysis of thirty families with Wilson’s disease. Ann. hum. Genet. 24, 33 (1960).PubMedGoogle Scholar
  170. Bearn, A. G.: Genetic considerations in Wilson’s disease. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  171. Bearn, A. G., and H. G. Kunkel: Biochemical abnormalities in Wilson’s disease. J. clin. Invest. 31, 616 (1952).Google Scholar
  172. Bearn, A. G., and H. G. Kunkel: Localisation of Cu64 in serum fractions following oral administration: An alteration in Wilson’s disease. Proc. Soc. exp. Biol. (N.Y.) 85, 44 (1954).Google Scholar
  173. Bearn, A. G., and H. G. Kunkel: Metabolic studies in Wilson’s disease using Cu64. J. Lab. clin. Med. 45, 623 (1955).PubMedGoogle Scholar
  174. Bearn, A. G., and H. G. Kunkel Wilson’s disease. Ergebn. inn. Med. Kinderheilk. 7, 147 (1956).Google Scholar
  175. Bearn, A. G., and H. G. Kunkel, T. F. Yü, and A. B. Gutman: Renal function in Wilson’s disease. J. clin. Invest. 86, 1107 (1957).Google Scholar
  176. Bearn, A. G., and H. G. Kunkel, T. F. Yü, and A. B. Gutman, A. G. Ritterband, and A. B. Gutman: Renal clearance studies in Wilson’s disease. Fed. Proc. 15, 12 (1956).Google Scholar
  177. Bickel, H.: Die Wilsonsche Krankheit als Stoff — wechselproblem. Dtsch. med. Wschr. 83, 766 (1958).Google Scholar
  178. Bickel, H.: Attempts at caeruloplasmin substitution in Wilson’s disease. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  179. Bickel, H., F. C. Neale, and G. Hall: A clinical and biochemical study of hepato-lenticular degeneration (Wilson’s disease). Quart. J. Med. 26, 527 (1957).PubMedGoogle Scholar
  180. Bickel, H., F. C. Neale, and G. Hall, H. E. Schultze, W. Grüter u. I. Göllner: Versuche zur Coeruloplasminsubstitution bei der hepato-zerebralen Degeneration (Wilsonsche Krankheit). Klin. Wschr. 84, 961 (1956).Google Scholar
  181. Bickel, H., F. C. Neale, and G. Hall, H. E. Schultze, W. Grüter u. I. Göllner, u. F. Souchon: Die Papierchromatographie in der Kinderheilkunde. Arch. Kinderheilk. Beih. 31 (1955).Google Scholar
  182. Bishop, C., W. T. Zimdahl, and J. H. Talbott: Uric acid in two patients with Wilson’s disease (hepatolenticular degeneration). Proc. Soc. exp. Biol. (N.Y.) 86, 440 (1954).Google Scholar
  183. Blaha, H., H. Gastager, H. Tschabitscher u. F. Wewalka: Die Aminoacidurie im Rahmen der Stoffwechselstörungen bei hepatolenti-culären Erkrankungen (Morbus Wilson und Pseudosklerose). Wien. klin. Wschr. 66, 915 (1954).PubMedGoogle Scholar
  184. Bogaert, L. van, et E. Willcox: Études ana-tomo-cliniques sur la dégénérescence hépato-lenticulaire. Forme portale de la maladie de Wilson, forme familiale de la pseudosclérose de Westphal- Strümpell. Rev.neurol. 66, 461 (1936).Google Scholar
  185. Boudin, G., et B. Pépin: Dégénérescence hépato-lenticulaire. Paris: Masson & Cie. 1959.Google Scholar
  186. Boudin, G., et B. Pépin: Osteoarticular changes in hepatolenticular degeneration. In: J. M. Walshe and J.N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  187. Bounding, J. E.: Treatment of Wilson’s disease with D-penicillamine. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  188. Brenner, W.: Die Bedeutung des Kupfers in Biologie und Pathologie unter besonderer Berücksichtigung des wachsenden Organismus. Ergebn. inn. Med. Kinderheilk., N.F. 4, 805 (1953).Google Scholar
  189. Bridgman, O., and P. S. Smyth: Progressive lenticular degeneration. J. nerv. ment. Dis. 99, 534 (1944).Google Scholar
  190. Browman, L.: Separation and characterisation of two coeruloplasmins from human serum. Nature (Lond.) 182, 1655 (1958).Google Scholar
  191. Browman, L.: Chromatographic studies on human caerulo-plasmin. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  192. Brückner: Über doppelScitige fortschreitende Degeneration des Linsenkerns (Morbus Wilson). Jb. Kinderheilk. 110, 284 (1925).Google Scholar
  193. Bush, J. A., J. P. Mahoney, H. Markowitz, C. J. Gubler, G. E. Cartwright, and M. M. Wintrobe: Studies on copper metabolism. XVI: Radioactive copper studies in normal subjects and in patients with hepatolenticular degeneration. J. clin. Invest. 34, 1766 (1955).PubMedGoogle Scholar
  194. Cartwright, G. E., J. A. Bush, H. Markowitz, J. P. Mahoney, and C. J. Gubler: Further studies on the abnormalities in the metabolism of copper in Wilson’s disease. J. clin. Invest. 84, 925 (1955).Google Scholar
  195. Cartwright, G. E., J. A. Bush, H. Markowitz, J. P. Mahoney, and C. J. Gubler E. E. Hodges, C. J. Gubler, J. P. Mahoney, K. Daum, M. M. Wintrobe, and W. B. Bean: Studies on copper metabolism. XIII. Hepatolenticular degeneration. J. clin. Invest. 33, 1487 (1954).PubMedGoogle Scholar
  196. Cartwright, G. E., J. A. Bush, H. Markowitz, J. P. Mahoney, and C. J. Gubler E. E. Hodges, C. J. Gubler, J. P. Mahonet, K. Daum, M. M. Wintrobe, and W. B. Bean, H. Markowitz, G. S. Shields, and M. M. Wintrobe: Studies on copper metabolism. XXIX. A critical analysis of serum copper and ceruloplasmin concentrations in normal subjects, patients with Wilson’s disease and relatives of patients with Wilson’s disease. Amer. J. Med. 28, 555 (1960).PubMedGoogle Scholar
  197. Chalmers, T. C., F. L. Iber, and L. L. Uzman: Hepatolenticular degeneration (Wilson’s disease) as a form of idiopathic cirrhosis. New Engl. J. Med. 256, 235 (1957).PubMedGoogle Scholar
  198. Cooper, A. M., E. D. Eckhardt, W. W. Faloon, and C. S. Davidson: Investigation of the aminoaciduria in Wilson’s disease (hepatolenticular degeneration): Demonstration of a defect in renal function. J. clin. Invest. 29, 265 (1950).PubMedGoogle Scholar
  199. Cumings, J. N.: The copper and iron content of brain and liver in the normal and in hepatolenticular degeneration. Brain 71, 410 (1948).PubMedGoogle Scholar
  200. Cumings, J. N.: The treatment of hepatolenticular degeneration. Proc. roy. Soc. Med. 52, 2 (1959).Google Scholar
  201. Curzon, Gr.: Caeruloplasmin. In: F. Linneweh, Erbliche Stoffwechselkrankheiten. Genetic defects of biologically active proteins. München u. Berlin: Urban & Schwarzenberg 1962.Google Scholar
  202. Curzon, G.R., and L. Vallet: The purification of human caeruloplasmin. Biochem. J. 74, 279 (1960).PubMedGoogle Scholar
  203. Denny-Brown, D., and H. Porter: The effect of BAL (2,3 dimercaptopropanol) in hepatolenticular degeneration (Wilson’s disease). New Engl. J. Med. 245, 917 (1951).PubMedGoogle Scholar
  204. Earl, C. J., M. J. Moulton, and B. Selverstone: Metabolism of copper in Wilson’s disease and in normal subjects; studies with Cu64. Amer. J. Med. 17, 205 (1954).PubMedGoogle Scholar
  205. Economo, C. von: Wilsons Krankheit und das „Syndrome du corps strié“. Z. Neur. 43, 173 (1918).Google Scholar
  206. Eden, A., and H. H. Green: Micro-determination of copper in biological material. Biochem. J. 84, 1202 (1940).Google Scholar
  207. Eicke, W. J.: Wilson’sche Krankheit — Pseudosklerose. In: Handbuch der speziellen pathologischen Anatomie und Histologie, Bd. 13/1, Bandteil A, S. 851. Berlin-Göttingen-Heidelberg: Springer 1957.Google Scholar
  208. Enger, E.: Wüson’s disease. Eeport of a case with normal serum ceruloplasmin level. Acta med. scand. 163, 121 (1959).PubMedGoogle Scholar
  209. Fellers, F. X., and N. T. Shahidi: The nephrotic syndrome induced by penicillamine therapy. Amer. J. Dis. Child. 98, 669 (1960).Google Scholar
  210. Fleischer, B.: Zwei weitere Fälle von grünlicher Verfärbung der Kornea. Klin. Mbl. Augen-heilk. 41, 489 (1903).Google Scholar
  211. Fleischer, B.: Die periphere braungrünliche Hornhautverfärbung als Symptom einer eigenartigen Allgemeinerkrankung. Münch. med. Wschr. 56, 1120 (1909).Google Scholar
  212. Forssman, O.: Wilson’s disease in a Swedish family. Acta med. scand. 166, 237 (1960).PubMedGoogle Scholar
  213. François, E., F. Labre, Nicolas, Mallein et Ruitton-Ugliengo: Maladie de Wilson a forme hépatique pure chez un nourisson. Heureux effects d’un traitement par les chélateurs. Lyon méd. No 12, 467 (1958).Google Scholar
  214. Franklin, E. C., and A. Bauman: Liver dysfunction in hepatolenticular degeneration; a review of eleven cases. Amer. J. Med. 15, 450 (1953).PubMedGoogle Scholar
  215. Gerlach, W., u. W. Eohrschneider: Besteht das Pigment des Kayser-Fleischerschen Hornhautringes aus Silber? Klin. Wschr. 13, 48 (1934).Google Scholar
  216. German, J. L., and A. G. Bearn: Effect of estrogens on copper metabolism in Wilson’s disease. J. clin. Invest. 40, 445 (1961).PubMedGoogle Scholar
  217. Glazebrook, A. J.: Wilson’s disease. Edinb. med. J. 52, 83 (1945).Google Scholar
  218. Green, C.L.: Histochemical demonstration of copper in a case of hepatolenticular degeneration. Amer. J. Path. 81, 545 (1955).Google Scholar
  219. Grüter, W.: Hämolytische Krisen als Frühmanifestation der Wilsonsehen Krankheit. Dtsch. Z. Nervenheilk. 179, 401 (1959).Google Scholar
  220. Gubler, C. J., H. Brown, H. Markowitz, G. H. Cartwright, and M. M. Wintrobe: Studies on copper metabolism. XXIII. Portal (Laennec’s) cirrhosis of the liver. J. clin. Invest. 36, 1208 (1957).PubMedGoogle Scholar
  221. Hall, H. C.: La dégénérescence hépato-lenticulaire; maladie de Wilson, pseudosclérose. Paris: Masson & Cie. 1921.Google Scholar
  222. Haurowitz, F.: Über eine Anomalie des Kupferstoffwechsels. Hoppe-Seylers Z. physiol. Chem. 190, 72 (1930).Google Scholar
  223. Hösslin, V. v., u. A. Alzheimer: Ein Beitrag zur Klinik und pathologischen Anatomie der Westphal-Strümpellschen Pseudosklerose. Z. Neur. 8, 183 (1912).Google Scholar
  224. Hollister, L. E., V. L. Cull, V. A. Gonda, and F. O. Kolb: Hepatolenticular degeneration. Clinical, biochemical and pathological study of a patient with fulminant course aggravated by treatment with BAL and Versenate. Amer. J. Med. 28, 623 (1960).PubMedGoogle Scholar
  225. Holmberg, C. G.: Development of knowledge of caeruloplasmin. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  226. Holmberg, C. G., and C. B. Laurell: Investigations in serum copper. II. Isolation of the copper containing protein, and a description of some of its properties. Acta chem. scand. 2, 550 (1948).Google Scholar
  227. Holmberg, C. G., and C. B. Laurell: Oxidase reactions in human plasma caused by coeruloplasmin. Scand. J. clin. Lab. Invest. 8, 103 (1951).Google Scholar
  228. Hornbostel, H.: Neuere Erkenntnisse über das hepato-lentikuläre Syndrom. Schweiz. med. schr. 84, 7 (1954).Google Scholar
  229. Hornykiewicz, O.: Caeruloplasmin. Z. Ernäh-rungsw., Suppl. 1, 124 (1961).Google Scholar
  230. Howard, C. P., and C. E. Eoyce: Progressive lenticular degeneration associated with cirrhosis of the liver (Wilson’s disease). Arch. intern. Med. 24, 497 (1919).Google Scholar
  231. Howell, J. S.: Histochemical demonstration of copper in copper-fed rats and in hepatolenticular degeneration. J. Path. Bact. 77, 473(1959).PubMedGoogle Scholar
  232. Humoller, F. L., F. A. Majka, A. J. Barak, J. D. Stevens, and J. M. Holthaus: Determination of plasma amine oxidase activity. Clin. Chem. 4, 1 (1958).PubMedGoogle Scholar
  233. Humoller, F. L., F. A. Majka, A. J. Barak, J. D. Stevens, and J. M. Holthaus, M. P. Mockler, J. M. Holthaus, and D. J. Mahler: Enzymatic properties of cerulo-plasmin. J. Lab. clin. Med. 56, 222 (1960).PubMedGoogle Scholar
  234. Jensen, W. N., and H. Kamin: Copper transport and excretion in normal subjects and in patients with Laennec’s cirrhosis and Wilson’s disease. A study with Cu64. J. Lab. clin. Med. 49, 200 (1957).Google Scholar
  235. Kayser, B.: Über einen Fall von angeborener grünlicher Verfärbung der Cornea. Klin. Mbl. Augenheilk. 40, 22 (1902).Google Scholar
  236. Kehrer, F.: Zur Ätiologie und Nosologie der Pseudosklerose Westphal-Wilson. Z. Neur. 129, 488 (1930).Google Scholar
  237. Lang, N., u. H. E. Kenschler: Untersuchungen zum Ort der Zöruloplasminbildung mit Radio -kupfer (Cu64). Z. ges. exp. Med. 180, 203 (1958).Google Scholar
  238. Lange, J.: Über die Langzeitbehandlung des Morbus Wilson mit Penicillamin. Dtsch. Z. Nervenheilk. 188, 63 (1961).Google Scholar
  239. Lange, J.: Über den klinisch asymptomatischen Morbus Wüson. Dtsch. med. Wschr. 87, 541 (1962).Google Scholar
  240. Lange, J.: Zur Diagnostik und Therapie der hepato-zerebralen Degeneration (Morbus Wüson). Dtsch. med. Wschr. 88, 896 (1963).Google Scholar
  241. Lange, J., u. H. Hager: Über die Wüson’sche Krankheit. Zugleich ein Beitrag zur Penicülamin-Thera-pie. Z. Kinderheilk. 84, 125 (1960).PubMedGoogle Scholar
  242. Lawrie, N. E., and E.A. Carter: Acute case of Wilson’s disease (hepatolenticular degeneration). Lancet 1958I, 1309.Google Scholar
  243. Lehoczky, T. v.: Zur klinischen und anatomischen Diagnose der Wüson-Pseudosklerose-Krankheit. Dtsch.Z.Nervenheilk. l41, 28(1936).Google Scholar
  244. Litlin, E. B., N. P. Goldstein, E. V. Eandall, M. H. Power, and G. R. Diessner: Effect of D,L-penicülamine on the urinary excretion of copper and calcium in hepatolenticular degeneration (Wilson’s disease). Neurology 10, 123 (1960).Google Scholar
  245. Lüthy, F.: Über die hepato-lentikuläre Degeneration (Wilson-Westphal-StrümpeU). Dtsch. Z. Nervenheilk. 123, 101 (1931).Google Scholar
  246. Lygren, T.: Hepatolenticular degeneration (Wilson’s disease) and juvenile cirrhosis in the same family. Lancet 1959I, 275.Google Scholar
  247. Mahoney, J. P., A. A. Sandberg, C. J. Gubler, G. E. Cartwright, and M. M. Wintrobe: Uric acid metabolism in hepatolenticular degeneration. Proc. Soc. exp. Biol. (N.Y.) 88, 427 (1955).Google Scholar
  248. Mandelbrote, B. M., M. W. Stanier, R. H. S. Thompson, and M. N. Thurston: Studies on copper metabolism in demyelinating diseases of the central nervous system. Brain 71, 212 (1948).PubMedGoogle Scholar
  249. Markowitz, H., C. J. Gubler, J. P. Mahoney, G. E. Cartwright, and M. M. Wintrobe: Studies on copper metabolism. XIV. Copper, ceruloplasmin and oxidase activity in sera of normal human subjects, pregnant women, and patients with infection, hepatolenticular degeneration and the nephrotic syndrome. J. clin. Invest. 34, 1498 (1955).PubMedGoogle Scholar
  250. Matthews, W. B.: The absorption and excretion of radiocopper in hepatolenticular degeneration (Wilson’s disease). J. Neurol. Neurosurg. Psychiat. 17, 242 (1954).PubMedGoogle Scholar
  251. Matthews, W. B., M.D.Milne, and M. Bell: The metabolic disorder in hepato-lenticular degeneration. Quart. J. Med. 21, 425 (1952).PubMedGoogle Scholar
  252. Matzner, B., W. Menger u. K. Schaefer: Über „dynamische Milzdekompensation“ (Banti-sches Syndrom) bei hepatolentikulärer Degeneration und die moderne chirurgische Therapie. Arch. Kinderheilk. 147, 141 (1953).Google Scholar
  253. Maytum, W. J., N. P. Goldstein, W. F. Mc Guckin, and C. A. Owen: Copper metabolism in Wilson’s disease, Laennec’s cirrhosis and hemachromatosis: Studies with radiocopper (Cu64). Proc. Mayo Clin. 36, 641 (1961).Google Scholar
  254. Morell, A. G., and I. H. Scheinberg: Preparation of an apoprotein from ceruloplasmin by reversible dissociation of copper. Science 127, 588 (1958).PubMedGoogle Scholar
  255. Morell, A. G., and I. H. Scheinberg, and I. H. Scheinberg: Heterogeneity of ceruloplasmin. Science 131, 930 (1960).PubMedGoogle Scholar
  256. Morell, A. G., and I. H. Scheinberg, and I. H. Scheinberg, J. E. Shapiro, and I. H. Scheinberg: Copper binding protein from human liver. In: J. M. Walshe and J. N. Cumings: Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  257. Neale, F. C., and M. Fischer-Williams: Copper metabolism in normal adults and in clinically normal relatives of patients with Wilson’s disease. J. clin. Path. 11, 441 (1958).PubMedGoogle Scholar
  258. Okinaka, S., M. Yoshekowa, M. Toyoda, T. Mozai, Y. Toyokuro, and M. Kamayama: Pathogenesis of hepatocerebral disease. II. Hi-stochemical study of copper of liver and brain in Wilson’s disease. Arch. Neurol. Psychiat. (Chic.) 72, 573 (1954).Google Scholar
  259. Osborn, S. B., C. N. Roberts, and J. M. Walshe: Uptake of radiocopper by the liver. A study of patients with Wilson’s disease and various control groups. Clin. Sci. 24, 13 (1963).PubMedGoogle Scholar
  260. Osborn, S. B., C. N. Roberts, and J. M. Walshe, and J. M. Walshe: Effect of penicillamine and dimercaprol on turnover of copper in patients with Wilson’s disease. Lancet 1958I,70.Google Scholar
  261. Pojerová, A., and J. Továrek: Ceruloplasmin in early childhood. Acta paediat. (Uppsala) 49, 113 (1960).Google Scholar
  262. Porter, H.: Amino acid excretion in degenerative diseases of the nervous system. J. Lab. clin. Med. 84, 1623 (1949).Google Scholar
  263. Poulik, M. D., and A. G. Bearn: Heterogeneity of ceruloplasmin. Clin. chim. Acta 7, 374 (1962).PubMedGoogle Scholar
  264. Rabiner, A. M., H. Joachim, and I. S. Freiman: Hepatolenticular degeneration (Wilson’s disease) following splenectomy; interrelationship of the retículo-endothelial and central nervous systems. Ann. intern. Med. 14, 1781 (1941).Google Scholar
  265. Ravin, H.A.: Rapid test for hepatolenticular degeneration. Lancet 1956I, 726.Google Scholar
  266. Rees, K. R.: Copper as an enzyme poison. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  267. Richterich, R., E. Gautier, H. Stillhart, and E. Rossi: The heterogeneity of caeruloplasmin and the enzymatic defect in Wilson’s disease. Helv. paediat. Acta 15, 424 (1960).PubMedGoogle Scholar
  268. Rosenoer, V. M., and G. Franglen: Caeruloplasmin in Wilson’s disease. Lancet 1959II, 1163.Google Scholar
  269. Rumpel, A.: Über das Wesen und die Bedeutung der Leberveränderungen und der Pigmentierungen bei den damit verbundenen Fällen von Pseudosklerose, zugleich ein Beitrag zur Lehre von der Pseudosklerose (Westphal-Strümpell). Dtsch. Z. Nervenheilk. 49, 54 (1913).Google Scholar
  270. Sass-Kortsak, A., M. Cherniak, D. W. Geiger, and R. J. Slater: Observations on ceruloplasmin in Wilson’s disease. J. clin. Invest. 38, 1672 (1959a).PubMedGoogle Scholar
  271. Sass-Kortsak, A., M. Cherniak, D. W. Geiger, and R. J. Slater, B. S. Glatt, M. Cherniak, and I. Cederlund: Observations on copper metabolism in homozygotes and heterozygotes of Wilson’s disease. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  272. Sass-Kortsak, A., M. Cherniak, D. W. Geiger, and R. J. Slater, B. S. Glatt, M. Cherniak, and I. Ceder-lund, J. M. Leeming, and F. A. Muir: A study of heterozygosity in Wilson’s disease. Amer. J. Dis. Child. 98, 631 (1959b).Google Scholar
  273. Schaffner, F., I. Sternlieb, T. Barka, and H. Popper: Hepatocellular changes in Wilson’s disease. Histochemical and electron microscopic studies. Amer. J. Path. 41, 315 (1962).PubMedGoogle Scholar
  274. Scheinberg, I.H.: Copper metabolism: A review. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  275. Scheinberg, I.H., and D. Gitlin: Deficiency of ceruloplasmin in patients with hepatolenticular degeneration (Wilson’s disease). Science (Lancaster, Pa.) 116, 484 (1952).Google Scholar
  276. Scheinberg, I.H., and D. Gitlin, and I. Sternlieb: The liver in Wilson’s disease. Gastroenterology 37, 550 (1959).PubMedGoogle Scholar
  277. Scheinberg, I.H., and D. Gitlin, and I. Sternlieb Copper metabolism. Pharmacol. Eev. 12, 355 (1960a).Google Scholar
  278. Scheinberg, I.H., and D. Gitlin, and I. Sternlieb Environmental treatment of a hereditary illness: Wilson’s disease. Ann. intern. Med. 53, 1151 (1960b).PubMedGoogle Scholar
  279. Scheinberg, I.H., and D. Gitlin, and I. Sternlieb The longterm management of hepatolenticular degeneration (Wilson’s disease). Amer. J. Med. 29, 316 (1960c).PubMedGoogle Scholar
  280. Scheinberg, I.H., and D. Gitlin, and I. Sternlieb Wilson’s disease and the concentration of caeruloplasmin in serum. Lancet 1963I, 1420.Google Scholar
  281. Schulman, S., and A. Barbeau: Wilson’s disease: A case with almost total loss of cerebral white matter. J. Neuropath. exp. Neurol. 22, 105 (1963).PubMedGoogle Scholar
  282. Seven, M. J., B. Kliman, and E. E. Peterson: Clinical studies with penicillamine in hepatolenticular degeneration. Amer. J. med. Sci. 237, 49 (1959).PubMedGoogle Scholar
  283. Siemerling, E., u. H. Oloff: Pseudosklerose (Westphal-Strümpell) mit Cornealring (Kay-ser-Fleischer) und doppelScitiger Scheinkatarakt, die nur bei Scitlicher Beleuchtung sichtbar ist und die der nach Verletzung durch Kupfersplitter entstehenden Katarakt ähnlich ist. Klin. Wschr. 1922, 1087.Google Scholar
  284. Silverberg, M., and S. S. Oellis: The liver in juvenile Wilson’s disease. Pediatrics 30, 402 (1962).PubMedGoogle Scholar
  285. Sjövall, E., and A. Wallgren: Some aspects of hepatolenticular degeneration and its pathogenesis. Acta psychiat. (Kbh.) 9, 435 (1934).Google Scholar
  286. Sloane, P.: Case of hepatolenticular degeneration. Arch. Neurol. (Chic.) 37, 205 (1937).Google Scholar
  287. Soothill, J. F., J. D. Blainey, G. S. Hall, F. C. Neale, M. Fischer-Williams, and S. C. Melnick: A family study of the biochemical defects of Wilson’s disease. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961.Google Scholar
  288. Spielmeyer, W.: Die histopathologische Zusammengehörigkeit der Wilsonsehen und Pseudosklerose. Z. Neur. 57, 312 (1920).Google Scholar
  289. Stein, W. H., A. G. Bearn, and S. Moore: The amino acid content of the blood and urine in Wilson’s disease. J. clin. Invest. 33, 410 (1954).PubMedGoogle Scholar
  290. Sternlieb, I., A. G. Morell, C.D. Bauer, B. Combes, S. de Bobes-Sternberg, I. H. Scheinberg, and J. C. Brosseau: Detection of the heterozygous carrier of the Wilson’s disease gene. J. clin. Invest. 40, 707 (1961a).Google Scholar
  291. Sternlieb, I., A. G. Morell, C.D. Bauer, B. Combes, S. de Bobes-Sternberg, I. H. Scheinberg, and J. C. Brossea and I. H. Scheinberg: Homozygosity and heterozygosity in Wilson’s disease. In: J. M. Walshe and J. N. Cumings, Wilson’s disease. Some current concepts. Oxford: Blackwell Sci. Publ. 1961b.Google Scholar
  292. Sternlieb, I., A. G. Morell, C.D. Bauer, B. Combes, S. de Bobes-Sternberg, I. H. Scheinberg, and J. C. BrosseaU W. D. Tucker, M. W. Greene, and I. H. Scheinberg: The incorporation of copper into ceruloplasmin in vivo. Studies with copper64 and copper67. J. clin. Invest. 40, 1834 (1961c).PubMedGoogle Scholar
  293. Sternlieb, I., A. G. Morell, C.D. Bauer, B. Combes, S. de Bobes-Sternberg, I. H. Scheinberg, and J. C. BrosseaU W. D. Tucker, M. W. Greene, and I. H. Scheinberg, and I. H. Scheinberg: Ceruloplasmin in health and disease. Ann. N.Y. Acad. Sci. 94, 71 (1961).Google Scholar
  294. Sternlieb, I., A. G. Morell, C.D. Bauer, B. Combes, S. de Bobes-Sternberg, I. H. Scheinberg, and J. C. BrosseaU W. D. Tucker, M. W. Greene, and I. H. Scheinberg, and I. H. Scheinberg The diagnosis of Wilson’s disease in asymptomatic patients. J. Amer. med. Ass. 183, 747 (1963).Google Scholar
  295. Stillhart, H., R. Richterich, u. E. Rossi: Die monosymptomatische hepatische Form der hepato-lenticulären Degeneration. Schweiz. med. Wschr. 91, 1272 (1961).PubMedGoogle Scholar
  296. Strümpell, A.: Über die Westphalsche Pseudosklerose und über diffuse Hirnsklerose, insbesondere bei Kindern. Dtsch. Z. Nerven -heilk. 12, 115 (1898).Google Scholar
  297. Strümpell, A.: Ein weiterer Beitrag zur Kenntnis der sog. Pseudosklerose. Dtsch. Z. Nervenheilk. 14, 348 (1899).Google Scholar
  298. Sunderman, F. W., J. C. White, and F. W. Sunderman: Metabolic balance studies in hepatolenticular degeneration treated with diethyldithiocarbamate. Amer. J. Med. 34, 875 (1963).PubMedGoogle Scholar
  299. Thomalla, C.: Ein Fall von Torsionsspasmus mit Sektionsbefund und Scine Beziehungen zur Athétose double, Wilsonschen Krankheit und Pseudosklerose. Z. Neur. 41, 311 (1918).Google Scholar
  300. Uriel, J., H. Götz et P. Grabar: Étude de la céruloplasmine du sérum humain par l’élec-trophorèse en gélose et l’analyse immuno-électrophorétique. Microdétection colorimé-trique du cuivre aux protéines. Schweiz. med. Wschr. 87, 431 (1957).Google Scholar
  301. Uzman, L.: On the relationship of urinary copper excretion to the aminoaciduria in Wilson’s disease (hepatolenticular degeneration). Amer. J. med. Sci. 226, 645 (1953).PubMedGoogle Scholar
  302. Uzman, L.: Histochemical localization of copper with- rubeanic acid. Lab. Invest. 5, 299 (1956).Google Scholar
  303. Uzman, L., and D. Denny-Brown: Amino-aciduria in hepato-lenticular degeneration (Wilson’s disease). Amer. J. med. Sci. 215, 599 (1948).PubMedGoogle Scholar
  304. Uzman, L., and D. Denny-Brown, and M. A. Jakus: The Kayser-Fleischerring. A histochemical and electron microscope study. Neurology (Minneap.) 7, 341 (1957).Google Scholar
  305. Völsch, M.: Beitrag zur Lehre von der Pseudosklerose (Westphal-Strümpell). Dtsch. Z. Nervenheilk. 42, 335 (1911).Google Scholar
  306. Vogel, F. S.: Nephrotoxic properties of copper under experimental conditions in mice. With special reference to the pathogenesis of the renal alterations in Wilson’s disease. Amer. J. Path. 36, 699 (1960).Google Scholar
  307. Wald, I., et M. Niewiarowska: Étude clinique et biologique de la coagulation et de la fibrinolyse dans les 12 cas de dégénérescence hépato-lenticulaire. Sang 30, 560 (1959).Google Scholar
  308. Walshe, J. M.: Penicillamine, a new oral therapy for Wilson’s disease. Amer. J. Med. 21, 487 (1956).Google Scholar
  309. Walshe, J. M.: Current views on the pathogenesis and treatment of Wilson’s disease. Arch. intern. Med. 103, 155 (1959).Google Scholar
  310. Walshe, J. M. Studies in the oxidase properties of ceruloplasmin: Factors in normal and Wilson’s disease serum affecting oxidase activity. J. clin. Invest. 42, 1048 (1963).PubMedGoogle Scholar
  311. Warnock, C. G.: Hepatolenticular degeneration (Wilson’s disease). A report of 5 cases, with commentary. Ulster med. J. 21, 155 (1952).PubMedGoogle Scholar
  312. Westphal, C.: Über eine dem Bilde der cerebrospinal grauen Degeneration ähnliche Erkrankung des centralen Nervensystems ohne anatomischen Befund, nebst einigen Bemerkungen über paradoxe Contraction. Arch. Psychiat. Nervenkr. 14, 87 (1883).Google Scholar
  313. Wilson, S.A. K.: Progressive lenticular degeneration: familial nervous disease associated with cirrhosis of the liver. Brain 34, 295 (1912).Google Scholar
  314. Wimmer, A.: Études sur les syndromes extrapyramidaux; spasme de torsion progressif infantile (Syndrome du corps strié). Rev. neurol. 28, 952 (1921).Google Scholar
  315. Wintrobe, M. M., G. E. Cartwright, E. E. Hodges, C. J. Gubler, J. P. Mahoney, K. Daum, and W. B. Bean: Copper metabolism in Wilson’s disease. Trans. Ass. Amer. Phycns 67, 232 (1954).Google Scholar
  316. Yun-Bi Tu, E. Quentin Blackwell, and Tsung-Young Hou: Tissue copper levels in Chinese patients with Wilson’s disease. Neurology 13, 155 (1963).Google Scholar
  317. Zimdahl, W. T., and E. D. Cook: Metabolism of copper in hepatolenticular degeneration. Neurology 3, 569 (1952).Google Scholar
  318. Zimdahl, W. T., and E. D. Cook, I. Hyman, and W. F. Stafford jr.: The effect of drugs upon the copper metabolism in hepatolenticular degeneration and in normal subjects. J. Lab. clin. Med. 43, 774 (1954).PubMedGoogle Scholar
  319. Aebi, H., F. Jeunet, R. Richterich, H. Suter, E. Bütler, J. Frei and H. E. Marti: Observations in two Swiss families with acatalasia. Enzymol. Biol. Clin. 2, 1 (1962/63).Google Scholar
  320. Allison, A.C., W. Eees and G. P. Burn: Genetically controlled differences in catalase activity of dog erythrocytes. Nature (Lond.) 180, 649 (1957).Google Scholar
  321. Bingold, K.: Die Mere als blutzerstörendes Organ. Klin. Wschr. 1933, 1201.Google Scholar
  322. Chance, B.: Enzyme-substrate compounds. Advanc. Enzymol. 12, 153 (1951).Google Scholar
  323. Chance, B.: The state of catalase in the respiring bacterial cell. Science 116, 202 (1952).PubMedGoogle Scholar
  324. Euler, H. v., u. K. Josephson: Über Katalase. Justus Liebigs Ann. Chem. 452, 158 (1927).Google Scholar
  325. Kaziro, K., G. Kikuchi, H. Nakamura u. M. Yoshiya: Die Frage nach der physiologischen Funktion der Katalase im menschlichen Organismus; Notiz über die Entdeckung einer Konstitutionsanomalie „Anenzymia catala-sea“. Chem. Ber. 85, 886 (1952).Google Scholar
  326. Keilen, D., and E.F. Hartree: Properties of catalase: catalysis of alcohols. Biochem. J. 39, 293 (1945).Google Scholar
  327. Nishimura, E.T., H.B. Hamilton, T. Y. Kobara, S. Takahara, Y. Ogura and K. Doi: Carrier state in human acatalasemia. Science 130, 333 (1959).PubMedGoogle Scholar
  328. Eadev, T.: Hypoenzymia catalasea beim Meerschweinchen und deren Vererbung. Internat. Kongr. Biochem., Wien, Sept. 1958.Google Scholar
  329. Eauen, H. M.: Biochemisches Taschenbuch. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  330. Takahara, S.: Progressive oral gangrene, probably due to lack of catalase in the blood (acatalasemia). Eeport of nine cases. Lancet 1952II, 1101.Google Scholar
  331. Takahara, S.: Acatalasemia and hypocatalasemia. In: Erbliche Stoffwechselkrankheiten, herausgeg. von F. Linneweh. München u. Berlin: Urban & Schwarzenberg 1962.Google Scholar
  332. Takahara, S., H. B. Hamilton, J. V. Neel, T. Y. Kobara, Y. Ogura and E. T. Nishimura: Hypocatalasemia: a new genetic carrier state. J. clin. Invest. 39, 610 (1960).PubMedGoogle Scholar
  333. Theorell, H.: The iron-containing enzymes. B. Catalases, peroxydases, „hydroperoxidases“. In: The enzymes, herausgeg. von J.B. Sumner and K. Myrbäck, vol. 2, part I, p. 397. New York: Academic Press, Inc. 1951.Google Scholar
  334. Wyngaarden, J. B., and E. E. Howell: Acatalasia. In: J.B. Stanbury, J. B. Wyngaar-Den and D.S. Fredericks on. The metabolic basis of inherited diseases. New York-Toronto-London: McGraw-Hill Book Co. 1960.Google Scholar
  335. Anspach, W. E., and W. M. Clifton: Hyperparathyreoidism in children, report of two cases. Amer. J. Dis. Child. 58, 540 (1939).Google Scholar
  336. Bartter, F. C.: Hypophosphatasia. In: J. B. Stanbury et al., The metabolic basis of inherited diseases. New York-Toronto-London: McGraw-Hill Book Comp. 1960.Google Scholar
  337. Beisel, W. E., K. F. Austen, H. Eosen and E. G. Herndon: Metabolic observations in adult hypophosphatasia. Amer. J. Med. 29, 369 (1960).PubMedGoogle Scholar
  338. Beisel, W. E., K. F. Austen, H. Eosen and E. G-. Herndon, N. W. Beisuamin and K. F. Austen: Absence of leukocyte alkaline phosphatase activity in hypophosphatasia. Blood 14, 975 (1959).PubMedGoogle Scholar
  339. Bethune, J. E., and C. E. Dent: Hypophosphatasia in the adult. Amer. J. Med. 28, 615 (1960).PubMedGoogle Scholar
  340. Chown, B.: Kenal rickets and dwarfism: pituitary disease. Brit. J. Surg. 23, 552 (1936).Google Scholar
  341. Currarino, G.R., E. B. D. Neuhauser, G. C. Keyersbach and E. Sobel: Hypophosphatasia. Amer. J. Eoentgenol. 78, 392 (1957).Google Scholar
  342. Cusworth, D.C.: The isolation and identification of phosphoethanolamine from the urine of a case of hypophosphatasia. Biochem. J. 68, 262 (1958).PubMedGoogle Scholar
  343. Engfeldt, B., and E. Zetterström: Osteodys-metamorphosis fetalis. J. Pediat. 45, 125 (1954).PubMedGoogle Scholar
  344. Felder, J., u. K. Schreier: Hypophosphatasie. Mschr. Kinderheilk. 108, 437 (1955).Google Scholar
  345. Fishman, W. H., S. Green and N. I. Inglis: Organ-specific behavior exhibited by rat-intestine and liver alkaline phosphatase. Biochim. biophys. Acta (Amst.) 62, 363 (1962).Google Scholar
  346. Fraser, D.: Hypophosphatasia. Amer. J. Med. 22, 730 (1957).PubMedGoogle Scholar
  347. Fraser, D., and J. C. Laidlaw: Treatment of hypophosphatasia with cortisone. Lancet 1956I, 553.Google Scholar
  348. Fraser, D., J. C. Laidlaw, and E.E. Yendt: Metabolic abnormalities in hypophosphatasia. Amer. J. Dis. Child. 90, 552 (1955).Google Scholar
  349. Harris, H., and E. B. Eobson: A genetical study of ethanol-amino-phosphate excretion in hypophosphatasia. Ann. hum. Genet. 23, 421 (1959).PubMedGoogle Scholar
  350. Hühne, T., u. E. Schönfeld: Eine eigenartige Wachstumsstörung im Kindesalter. Mschr. Kinderheilk. 42, 267 (1928).Google Scholar
  351. Illingworth, E. S., and J. H. Gardiner: Premature loss of deciduous teeth. Arch. Dis. Child. 80, 449 (1955).Google Scholar
  352. Jelke, H.: Hypophosphatasia. Acta paediat. (Uppsala) 49, 297 (1960).Google Scholar
  353. Kellsey, D.C.: Hypophosphatasia and congenital bowing of the long bones. J. Amer. med. Ass. 179, 187 (1962).Google Scholar
  354. Korner, N. H.: Distribution of alkaline phosphatase in the serum proteins in hypophosphatasia. J. clin. Path. 15, 200 (1962).PubMedGoogle Scholar
  355. Kretchmer, N., M. Stone and C. Bauer: Hereditary enzymatic effects as illustrated by hypophosphatasia. Ann. N.Y. Acad. Sci. 75, 279 (1958).PubMedGoogle Scholar
  356. Kubatsch, H.: Über eine seltene Knochen -erkrankung. Mschr. Kinderheilk. 75, 253 (1938).Google Scholar
  357. MacDonald, A.M., and E. A. Shanks: Hypophosphatasia. Arch. Dis. Childh. 32, 304 (1957).PubMedGoogle Scholar
  358. Macey, H.B.: Multiple pseudofractures: report of a case. Proc. Mayo Clin. 15, 789 (1940).Google Scholar
  359. McCance, E. A., D. V. I. Fairweather, A. M. Barrett and A. B. Morrison: Genetic, clinical, biochemical, and pathological features of hypophosphatasia. Quart. J. Med. 85, 523 (1956).Google Scholar
  360. McCance, E. A., D. V. I. Fairweather, A. M. Barrett and A. B. Morrison, A. B. Morrison and C.E. Dent: The excretion of phosphoethanolamine and hypophosphatasia. Lancet 1955I, 131.Google Scholar
  361. Moll, H., u. F. Schmid: Eadiologische Grund-züge der atypischen Eachitisformen. Z. Kinderheilk. 80, 469 (1958).PubMedGoogle Scholar
  362. Moss, D.W., and E.J. King: Properties of alkaline phosphatase fractions separated by starch-gel electrophoresis. Biochem. J. 84, 192 (1962).PubMedGoogle Scholar
  363. Nakai, H., B. H. Landing and M. D. Pettit: Distinguishing hypophosphatasia from cretinism by means of alkaline phosphatase stain of skin biopsy. Amer. J. clin. Path. 33, 115 (1960).Google Scholar
  364. Neuman, W. F., and M. W. Neuman: The chemical dynamics of bone mineral. Chicago: Chicago Univ. Press 1958.Google Scholar
  365. Olsen, J.: Hypophosphatasia. Acta paediat. (Uppsala) 46, 305 (1957).Google Scholar
  366. Owen jr., J. A., and H. Peskin: Clinical study of an adult with hypophosphatasia. Clin. Ees. 6, 249 (1958).Google Scholar
  367. Portmann, P., E. Eossier U. H. Chardonnens: Zur Kenntnis der alkalischen Darmphospha-tase. II. Helv. physiol.-pharmacol. Acta 18, Fasc. 3, 1 (1960).Google Scholar
  368. Rathbun, J. C.: Hypophosphatasia. Amer. J. Dis. Child. 75, 822 (1948).Google Scholar
  369. Rathbun, J. C.: Hypophosphatasia. Helv. paediat. Acta 14, 548 (1959).PubMedGoogle Scholar
  370. Rathbun, J. C., J. W. MacDonald, H. M. C. Eobinson and J. M. Wanklin: Hypophosphatasia: a genetic study. Arch. Dis. Childh. 36, 540 (1961).Google Scholar
  371. Roche, J., et N.-V. Thoai: Phosphatase alcaline. Advanc. Enzymol. 10, 83 (1950).Google Scholar
  372. Rosenthal, I. M., S. L. Bonting, W. Hogan and C. L. Pirani: Tissue alkaline phosphatase in hypophosphatasia. Amer. J. Dis. Child. 99, 185 (1960).Google Scholar
  373. Scaglione, P.E., and J. F. Lucey: Further observations on hypophosphatasia. Amer. J. Dis. Child. 92, 493 (1956).Google Scholar
  374. Schlesinger, B., J. Luder and M. Bodian: Eickets with alkaline phosphatase deficiency: an osteoblastic dysplasia. Arch. Dis. Childh. 30, 265 (1955).PubMedGoogle Scholar
  375. Schneider, R. W., and A. C. Corcoran: Familial nephrogenic ostheopathy due to excessive tubular reabsorption of inorganic phosphate: new syndrome and novel mode of relief. J. Lab. clin. Med. 86, 985 (1950).Google Scholar
  376. Schramm, G., u. O. Armbruster: Die Reinher-stellung der alkalischen Phosphatase aus Kälberdarm. Z. Naturforsch. 9 b, 114 (1954).Google Scholar
  377. Silverman, J.L.: Apparent dominant inheritance of hypophosphatasia. Arch. intern. Med. 110, 191 (1962).PubMedGoogle Scholar
  378. Sobel, E.H., L.C. Clark, R.P. Fox and M. Robinow: Rickets, deficiency of „alkaline“ phosphatase activity and premature loss of teeth in childhood. Pediatrics 11, 309 (1953).PubMedGoogle Scholar
  379. Swoboda, W.: Hypophosphatasie. In: Moderne Probleme der Pädiatrie, Rd. 3, S. 462. 1957.Google Scholar
  380. Swoboda, W.: Die Problematik der „Enzymopathien“ in der Kinderheilkunde, dargestellt am Krankheits-bild der Hypophosphatasie. Wien.klin.Wschr. 1960, 606.Google Scholar
  381. Swoboda, W.: Hypophosphatasie. In: P. Linneweh, Erbliche Stoffwechselkrankheiten. München u. Berlin: Urban & Schwarzenberg 1962.Google Scholar
  382. Aldrich, E. A., V. Hawkinson, M. Grinstein and G. J. Watson: Photosensitive or congenital porphyria with hemolytic anemia. Blood 6, 685 (1951).PubMedGoogle Scholar
  383. Aldrich, E. A., V. Hawkinson, M. Grinstein and G. J. Watson, R. F. Labbe and E. L. Talman: A review of porphyrin metabolism with special reference to childhood. Amer. J. med. Sci. 230, 675 (1955).PubMedGoogle Scholar
  384. Barnes, H. D., J. Frootko and J. L. Pernell: Unusually early manifestation of porphyria cutanea tarda. S. Afr. med. J. 81, 342 (1957).Google Scholar
  385. Baumstark, F.: Zwei pathologische Harnfarbstoffe. Pflügers Arch. ges. Physiol. 9, 568 (1874).Google Scholar
  386. Berger, H., I.R. Weber, J. Antenner u. U. Pfändler: Schwere Ariboflavinose, Spätrachitis und Amindiabetes bei chronischer erblicher Koproporphyrie. Z. Vitaminforsch. 26, 96 (1955).Google Scholar
  387. Bergh, A.A. H. van den, Regniers u. Müller: Ein Fall von kongenitaler Porphyrinurie mit Koproporphyrin in Harn und Stuhl. Arch. Verdau.-Kr. 42, 302 (1928).Google Scholar
  388. Bogorad, L.: The enzymatic synthesis of porphyrins from porphobilinogen. J. biol. Chem. 233, 501, 510, 516 (1958).PubMedGoogle Scholar
  389. Bogorad, L.: Enzymatic mechanisms in porphyrin synthesis: Possible enzymatic blocks in porphyrias. Ann. N.Y. Acad. Sci. 104, 676 (1963).Google Scholar
  390. Booij, H.L., and C. Rimington: Effect of preheating on porphyrin synthesis by red cells. Biochem. J. 65, P 4 (1957).Google Scholar
  391. Borst, M., u. H. Königsdörffer: Untersuchungen über Porphyrie mit besonderer Berücksichtigung der Porphyria congenita. Leipzig: S. Hirzel 1929.Google Scholar
  392. Brugsch, J.: Porphyrine, 2. Aufl. Leipzig: Johann Ambrosius Barth 1959.Google Scholar
  393. CIBA Foundation Symposium on: Porphyrin biosynthesis and metabolism. Ed. by G. E.W. Wolstenholme and E. C. P. Millar. Boston: Little, Brown & Co. 1955.Google Scholar
  394. Crosby, W.H.: Hereditary nonspherocytic hemolytic anemia. Blood 5, 233 (1950).PubMedGoogle Scholar
  395. De Marval, L., e R. Pons: Concomitancía entre una porfirimiria congénita en icterica hemo-litica. Arch. argent. Pediat. 5, 220 (1934).Google Scholar
  396. Drabkin, D.L.: Some historical highlights in knowledge of porphyrins and porphyrias. Ann. N.Y. Acad. Sci. 104, 658 (1963).Google Scholar
  397. Dunsky, I., S. Freeman and S. Gibson: Porphyria and porphyrinuria. Amer. J. Dis. Child. 74, 305 (1947).Google Scholar
  398. Feldberg, W., and J. Talesnik: Reduction of tissue histamine by compound 48/80. J. Physiol. (Lond.) 120, 550 (1953).Google Scholar
  399. Fischer, H.: Über das Urinporphyrin. Hoppe-Seylers Z. physiol. Chem. 95, 34 (1915).Google Scholar
  400. Fischer, H.: Über das Kotporphyrin. Hoppe-Seylers Z. physiol. Chem. 96, 148 (1915).Google Scholar
  401. Fischer, H., H. Hilmer, F. Linder u. B. Pützer: Chemische Befunde bei einem Fall von Porphyrinurie (Petry). Hoppe-Seylers Z. physiol. Chem. 150, 44 (1925).Google Scholar
  402. Garrod, A. E.: Inborn errors of metabolism, 2. Aufl. London: Frowde, Hodder & Stoughton 1923.Google Scholar
  403. Goldberg, A., and C. Rimington: Diseases of porphyrin metabolism. Springfield/Ill.: Ch. C. Thomas 1962.Google Scholar
  404. Granick, S., and D. MaUzerall: Porphyrin biosynthesis in erythrocytes. II: Enzymes converting δ-aminolevulinic acid to copro-porphyrinogen. J.biol.Chem.232, 1119(1958).PubMedGoogle Scholar
  405. Gray, C. H., H. Muir and A. Neuberger: Studies on congenital prophyria. III: The incorporation of 15N into haem and glycine of haemoglobin. Biochem. J. 47, 542 (1950).PubMedGoogle Scholar
  406. Gray, C. H., H. Muir and A. Neuberger, and A. Neuberger: Effect of splenectomy in a case of congenital porphyria. Lancet 1952I, 851.Google Scholar
  407. Gross, S., and M. Schönberg: Erythropoietic porphyria with hemolytic anemia, thrombocytopenia and folic acid depletion. I. Electron microscopic studies. Ref. 33rd Meeting Soc. Ped. Research, Atlantic City, 1.–2. Mai 1963.Google Scholar
  408. Günther, H.: Die Hämatoporphyrie. Dtsch. Arch. klin. Med. 105, 88 (1912).Google Scholar
  409. Günther, H.: Hämatoporphyrie. In A. Schittenhelm, Handbuch der Krankheiten des Blutes und der blutbildenden Organe, Bd. 2. Berlin: Springer 1925.Google Scholar
  410. Harris, H.: Human biochemical genetics. Cambridge: Cambridge Univ. Press 1959.Google Scholar
  411. Heilmeyer, L., R. Clotten u. H. Wehninger: Porphyrinstoffwechselstudien. I: Die hoch-spannungselektrophoretische Trennung von Porphyrinen und ihre quantitative Bestimmung. Dtsch. med. Wschr. 1962, 131.Google Scholar
  412. Hoare, D. S., and H. Heath: The biosynthesis of porphyrins from porphobilinogen by Rho-dopseudomonas spheroides. Biochem. J. 73, 679 (1959).PubMedGoogle Scholar
  413. Ippen, H.: Fraktionierte Porphyrinbestimmung im Urin durch Papierelektrophorese. Klin. Wschr. 1962, 745.Google Scholar
  414. Ippen, H., u. R. Kirchmeyer: Leber und Porphyrine. I: Quantitative Bestimmung der Porphyrine in menschlichen Lebern. Klin. Wschr. 1961, 298.Google Scholar
  415. Kench, J. E., F. A. Langley and J. F. Wilkinson: Biochemical and pathological studies of congenital porphyria. Quart. J. Med., N.S. 22, 285 (1953).Google Scholar
  416. Kosenow, W.: Erythrocyten-Primärfluoreszenz bei Porphyrin-Dermatosen. Med. Klin. 49, 1099 (1954).Google Scholar
  417. Kosenow, W., u. A. Treibs: Lichtempfindlichkeit und Por-phyrinämie. Z. Kinderheilk. 73, 82 (1953).PubMedGoogle Scholar
  418. London, I. M., R. West, D. Shemin and D. Rittenberg: Porphyrin formation and haemoglobin metabolism in congenital porphyria. J.biol. Chem. 184, 365 (1950).PubMedGoogle Scholar
  419. Magnus, I. A., A. Jarrett, T. A. J. Prankerd and C. Rimington: Erythropoietic protoporphyria. A new porphyria syndrome with solar urticaria due to protoporphyrinaemia. Lancet 1961II, 448.Google Scholar
  420. Marchionini, A., u. Th. Nasemann: Kerato-acanthom, Retothelsarkom, Naevus fusco-coeruleus ophthalmo-maxillaris, Ota, Granulomatosis disciformis chronica et progressiva Miescher, Basaliomatose, Ulcus tropicum, Schröpfnarbe, Hydroa vacciniforme. Hautarzt 13, 523–524 (1962).Google Scholar
  421. Mauzerall, D., and S. Granick: Porphyrin biosynthesis in erythrocytes. III: Uroporphyrinogen and its descarboxylase. J. biol. Chem. 232, 1141 (1958).PubMedGoogle Scholar
  422. Moreo, L., L. Metrico, L. Cavalga and U. Marini: A study of „Waldenstrom’s porphyrin“ by fractional crystallization in a case of acute intermittent porphyria. Ref. Intern. Symp. on Normal and Pathological Porphyrin Metabolism, Turin, 12.–13. Juni 1961.Google Scholar
  423. Müller, A. H.: Beitrag zur Kenntnis der Porphyria congenita Günther. Z. klin. Med. 127, 460 (1934).Google Scholar
  424. Rimington, C.: Porphyria. Brit. med. J. 1958I, 640.Google Scholar
  425. Rimington, C.: Types of porphyria: Some thoughts about biochemical mechanisms involved. Ann. N.Y. Acad. Sci. 104, 666 (1963).PubMedGoogle Scholar
  426. Rosenthal, I. M., E. L. Lipton and G. Asrow: Effect of splenectomy on porphyria erythro-poietica. Pediatrics 15, 663 (1955).PubMedGoogle Scholar
  427. Sano, S., and C. Rimington: Excretion of various porphyrins and their corresponding porphyrinogens by rabbits after intravenous injection. Biochem. J. 86, 203 (1963).PubMedGoogle Scholar
  428. Sato, A., and N. Takahashi: A new form of congenital hematoporphyria: Oligochromia, porphyrinuria (megalosplenica congenita). Amer. J. Dis. Child. 32, 325 (1926).Google Scholar
  429. Schmid, R.: The porphyrias. In J. B. Stanbury, J. B. Wyngaarden and D. S. Fredrickson, The metabolic basis of inherited disease. New York-Toronto-London: McGraw-Hill Book Co. 1960.Google Scholar
  430. Schmid, R., S. Schwartz and D. Sundberg: Erythropoietic (congenital) porphyria: A rare abnormality of the normoblasts. Blood 10, 416 (1955).PubMedGoogle Scholar
  431. Schmid, B., S. Schwartz, and C. J. Watson: Neuere Ergebnisse auf dem Gebiet der Porphyrien. Aeta haemat. (Basel) 10, 150 (1953).Google Scholar
  432. Schmtd, B., S. Schwartz, and C. J. Watson: Porphyrin content of bone marrow and liver in various forms of porphyria. Arch. intern. Med. 98, 167 (1954).Google Scholar
  433. Schmtd, B., S. Schwartz, and C. J. Watson, and D. Shemin: The enzymatic formation of porphobilinogen from δ-aminolevulinic acid and its conversion to protoporphyrin. J. Amer. chem. Soc. 77, 506 (1955).Google Scholar
  434. Schmidt-La Baume, F.: Hydroa aestivale. Klin. Wschr. 1926, 827.Google Scholar
  435. Schwartz, S., and H. M. Wikoff: The relation of erythrocyte coproporphyria and protoporphyrin to erythropoiesis. J. biol. Chem. 194, 563 (1952).PubMedGoogle Scholar
  436. Shemin, D.: The biosynthesis of porphyrins. Ergebn. Physiol. 49, 299 (1957).PubMedGoogle Scholar
  437. Stich, W.: Die kongenitale Porphyrie, eine ery-thropathische hämolytische Anämie (Por-phyrocytose). Schweiz. med. Wschr. 1958, 1012.Google Scholar
  438. Stich, W.: Neue Ergebnisse über Porphyrinstoffwechsel und Porphyrinkrankheiten. Klin. Wschr. 1959, 681.Google Scholar
  439. Stich, W.: Porphyrien. In: Erbliche Stoffwechselkrankheiten, herausgeg. von F. Linneweh. München u. Berlin: Urban & Schwarzenberg 1962.Google Scholar
  440. Tönz, O., T. Mere U u. H. Käser: Familiäre, nicht sphärozytäre hämolytische Anämie mit Ausscheidung von Porphyrinpräkursoren. Helv. paediat. Acta 16, 111 (1961).PubMedGoogle Scholar
  441. Turner, W. J., and M. E. Obermayer: Studies on Porphyria. II: A case of porphyria with epidermolysis bullosa, hypertrichosis and melanosis. Arch. Derm. Syph. (Chic.) 37, 549 (1938).Google Scholar
  442. Vannotti, A.: Porphyrins. Their biological and chemical importance. London: Hilgers & Watts 1954.Google Scholar
  443. Varadi, S.: Haematological aspects in a case of erythropoietic porphyria. Brit. J. Haemat. 4, 270 (1958).PubMedGoogle Scholar
  444. Waldenstrom, J.: Studien über Porphyrie. Acta med. scand., Suppl. 82 (1937).Google Scholar
  445. Waldenstrom, J.: Porphyrias as inborn errors of metabolism. Amer. J. Med. 22, 758 (1957).PubMedGoogle Scholar
  446. Watson, C. J.: Porphyria. Advanc. intern. Med. 6, 235 (1954).Google Scholar
  447. Watson, C. J. Porphyrin metabolism in the anaemias. Arch. intern. Med. 99, 323 (1957).Google Scholar
  448. Watson, C. J. The problem of porphyria. Some facts and questions. New Engl. J. Med. 263, 1205 (1960).PubMedGoogle Scholar
  449. Watson, C. J., and E.A. Larson: The urinary copropor-phyrins in health and disease. Physiol. Rev. 27, 478 (1947).PubMedGoogle Scholar
  450. Watson, C. J., and E.A. Larson, S. Schwartz, W. Schulze, L. O. Jacobson and B. Zagaria: Studies of coproporphyrin. III: Idiopathic coproporphyrinuria; a hitherto unrecognized form characterized by lack of symptoms in spite of the excretion of large amounts of coproporphyrin. J. clin. Invest. 48, 465 (1949).Google Scholar
  451. Alwall, N.: On hereditary, non-hemolytic bili-rubinemia. Acta med. scand. 123, 560 (1946).PubMedGoogle Scholar
  452. Alwall, N., C. B. Laurell and I. Nilsby: Studien on heredity in cases of „non-hemolytic bili-rubinemia“ without direct van den Bergh reaction. Acta med. scand. 124, 114 (1946).Google Scholar
  453. Arias, I.M.: Chronic unconjugated hyperbilirubinemia without overt signs of hemolysis in adolescents and adults. J. clin. Invest. 41, 2233 (1962).PubMedGoogle Scholar
  454. Axelrod, J., E. Schmid and L. Hammaker: A biochemical lesion in congenital nonobstructive non-hemolytic jaundice. Nature (Lond.) 180, 1426 (1957).Google Scholar
  455. Bamatter, F., H. S. Varonier, C. Boitiller et G. Simon: Ictère non hémolytique congénital avec ictère nuclèaire. J. suisse Med. 92, 1111 (1962).Google Scholar
  456. Barniville, H. T. F., and B. Misk: Urinary glucuronic acid excretion in liver disease and the effect of a salicylamide load. Brit. med. J. 1959I, 337.Google Scholar
  457. Baroody, W. G., and R. T. Shugart: Familial non-hemolytic icterus. Amer. J. Med. 20, 314 (1956).PubMedGoogle Scholar
  458. Billing, B. H., P. G. Cole and G. H. Lathe: The excretion of bilirubin as a diglucuronide giving the direct van den Bergh reaction. Biochem. J. 65, 774 (1957).PubMedGoogle Scholar
  459. Brown, A. K.: Bilirubin metabolism with special reference to neonatal jaundice. Advanc. Pediat. 12, 121 (1962).Google Scholar
  460. Brown, A. K., and W. W. Zuelzer: Studies on the development of the glucuronide conjugating system. J. clin. Invest. 37, 332 (1958).PubMedGoogle Scholar
  461. Schmid, B., S. Buckingham, G. A. Mendilla and L. Hammaker: Bilirubin metabolism in the fetus. Nature (Lond.) 188, 1823 (1959).Google Scholar
  462. Schmid, B., S. Buckingham, G. A. Mendilla and L. Hammaker, and L. Hammaker: Glucuronide formation in patients with constitutional hepatic dysfunction (Gilberts disease). New Engl. J. Med. 260, 1310 (1959).PubMedGoogle Scholar
  463. Siede, W.: Die nichthämolytische Hyperbili-rubinämie ohne direkte van den Bergh-Beak-tion. Dtsch. med. Wschr. 1957, 504.Google Scholar
  464. Soeken, G.: Kernikterus und Morbus hämolyticus neonatorum. 35. Beiheft zum Arch. Kinderheilk. Stuttgart: Ferdinand Enke 1957.Google Scholar
  465. Sprinz, H., and E. S. Nelson: Persistent nonhemolytic hyperbilirubinemia associated with lipochrome-like pigment in liver cells: report of four cases. Ann. intern. Med. 41, 952 (1954).PubMedGoogle Scholar
  466. Stransky, E.: Über kongenitalen familiären nicht hämolytischen Ikterus. Ann. paediat. (Basel) 175, 301 (1950).Google Scholar
  467. Sugar, P.: Familial nonhemolytic jaundice. Arch. intern. Med. 108, 121 (1961).Google Scholar
  468. Summerskill, W. H. J., and J. M. Walshe: Benigne recurrent intrahepatic „obstructive“ jaundice. Lancet 1959II, 686.Google Scholar
  469. Szabo, L., Z. Kovacs and P. B. Ebrey: Crigler Najjars Syndrome. Acta paediat. Acad. Sci. hung. 3, 49 (1962).Google Scholar
  470. Tygstrup, N.: Intermittend possibly familial intrahepatic cholestatic jaundice. Lancet 1960I, 1171.Google Scholar
  471. Vest, M.: Nichthämolytische Hyperbilirübin-ämien. In: Erbliche Stoffwechselkrankheiten, herausgeg. von F. Linneweh. München u. Berlin: Urban & Schwarzenberg 1962.Google Scholar
  472. Vest, M. F., H.J. Kaufmann and E. Fritz: Chronic non-hemolytic jaundice with conjugated bilirubin in the serum and normal liver histology: a case study. Arch. Dis. Childh. 35, 600 (1960).PubMedGoogle Scholar
  473. Whitington, G. L.: Congenital nonhemolytic icterus with damage to the central nervous system. Eeport of a case in a negro child. Pediatrics 25, 437 (1960).PubMedGoogle Scholar
  474. Williams, E., and B. H. Billing: Action of steroid therapy in jaundice. Lancet 1961II, 392.Google Scholar
  475. Wolf, E. L., M. Pizette, A. Eichman, D. A. Dreiling, W. Jacobs, O. Fernandez and H. Popper: Chronic jaundice. A study of two afflicted families. Amer. J. Med. 28, 32 (1960).PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1965

Authors and Affiliations

  • K. Schreier
    • 1
  1. 1.HeidelbergDeutschland

Personalised recommendations