Nervous Activities of the Heart in Crustacea

  • S. Hagiwara
Conference paper
Part of the Ergebnisse der Biologie / Advances in Biology book series (ERGBIOL, volume 24)

Abstract

Crustacean cardiac rhythms, unlike those of vertebrates, do not originate in the heart muscle itself. Ganglion cells are normally located in the dorsal wall of the heart and the excitation for the heart beat starts at the ganglion. A neurogenic origin of the heart beat, however, was first demonstrated in Limulus by Carlson (1904). He applied a warm test tube on various parts of the heart muscle and ganglion and found that the cardiac rhythm was accelerated only when the tube was placed on a certain part of the ganglion (the fourth and fifth segments of the ganglion). If the ganglion was removed from the heart the beat stopped. These findings show that the cardiac rhythm arises not only at the cardiac ganglion but also at certain neurons in the ganglion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrowicz, J. S.: The innervation of the heart of the Crustacea. I, Decapoda. Quart. J. Microscop. 75, 181–249 (1932).Google Scholar
  2. Alexandrowicz, J. S.: The innervation of the heart of Crustacea. II, Stomatopoda. Quart. J. Microscop. 76, 511–548 (1934).Google Scholar
  3. Alexandrowicz, J. S.: Innervation of the heart of Ligia oceanica. J. Marine Biol. Assoc. United Kingdom 31, 85–96 (1952).CrossRefGoogle Scholar
  4. Alexandrowicz, J. S.: Innervation of an amphipod heart. J. Marine Biol. Assoc. United Kingdom 33, 709–719 (1954).CrossRefGoogle Scholar
  5. Arvanitaki, A., and N. Chalazonitis: Interactions électriques entre le soma géant A et les somata immédiatement contigus (Ganglion pleurobranchial d’Aplysia). Bull. Inst. oceanogr. Monaco, Nr. 1143, 1–30 (1959).Google Scholar
  6. Bazemore, A. W., K. A. C. Elliott and E. Florey: Isolation of factor I. J. Neurochem. 1, 334–339 (1957).CrossRefGoogle Scholar
  7. Bennett, M. V. W.: Electrical connections between supramedullary neurons. Fed. Proc. 19, 282 (1960).Google Scholar
  8. Bullock, T. H., M. J. Cohen and D. M. Maynard: Integration and central synaptic properties of some receptors. Fed. Proc. 13, 20 (1954).Google Scholar
  9. Bullock, T. H. and C. A. Terzuolo: Diverse forms of activity in the somata of spontaneous and integrating ganglion cells. J. Physiol. 134, 341–364 (1957).Google Scholar
  10. Cannon, H. G.: On the anatomy of Gigantocypris muelleri. Discovery Repts. 19, 185–244 (1960).Google Scholar
  11. Carlson, A. J.: Nervous pacemaker in Limulus heart. Am. J. Physiol. 12, 67–74 (1904).Google Scholar
  12. Claus, C.: Die Kreislauf organe und Blutbewegung der Stomatopoden. Arb. Zool. Inst. Univ. Wien und zool. Sta. Triest 5, 1–14 (1884).Google Scholar
  13. Coombs, J. S., J. C. Eccles and P. Fatt: The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory postsynaptic potential. J. Physiol. 130, 326–373 (1955).PubMedGoogle Scholar
  14. Eccles, J. C.: The physiology of nerve cells. Baltimore: The Johns Hopkins Press 1957.Google Scholar
  15. Eyzaguirre, C., and S. W. Kuffler: Process of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. Gen. Physiol. 39, 87–119 (1955).PubMedCrossRefGoogle Scholar
  16. Florey, E.: Studies on the nervous regulation of the heart beat in decapod Crustacea. J. Gen. Physiol. 43, 1061–1081 (1960).PubMedCrossRefGoogle Scholar
  17. Florey, E., and M. A. Biedermann: Studies on the distribution of factor I and acetylcholine in crustacean peripheral nerve. J. Gen. Physiol. 43, 509–522 (1960).PubMedCrossRefGoogle Scholar
  18. Furshpan, E. J., and D. D. Potter: Transmission at the giant motor synapse of the crayfish. J. Physiol. 145, 287–325 (1959).Google Scholar
  19. Grundfest, H.: Electrical inexcitability of synapses and some of its consequences in the central nervous system. Physiol. Rev. 37, 337–361 (1957).PubMedGoogle Scholar
  20. Hagiwara, S.: Current voltage relations of nerve cell membrane. Electrical activity of single cells. Edited by Y. Katsuki. Igakushoin, Hongo, Tokyo, 145–157 (1960).Google Scholar
  21. Hagiwara, S. and T. H. Bullock: Study of intracellular potential in pacemaker and integrative neurons of the lobster cardiac ganglion. Biol. Bull. 109, 341 (1955).Google Scholar
  22. Hagiwara, S. and T. H. Bullock: Intracellular potentials in pacemaker and integrative neurons in the lobster cardiac ganglion. J. Cell. Comp. Physiol. 50, 25–47 (1957).CrossRefGoogle Scholar
  23. Hagiwara, S. and K. Kusano: Synaptic inhibition in giant nerve cell of Onchidium verruculatum. J. Neurophysiol. 24, 167–175 (1961).PubMedGoogle Scholar
  24. Hagiwara, S. and K. Kusano and N. Saito: Membrane changes in crayfish stretch receptor neuron during synaptic inhibition and under action of gamma-aminobutyric acid. J. Neurophysiol. 23, 554–572 (1959).Google Scholar
  25. Hagiwara, S., A. Watanabe and N. Saito: Potential changes in syncytial neurons of lobster cardiac ganglion. J. Neurophysiol. 22, 554–572 (1959).PubMedGoogle Scholar
  26. Kennedy, D., and J. B. Preston: Activity of interneurons in the caudal ganglion in crayfish. J. Gen. Physiol. 43, 655–670 (1960).PubMedCrossRefGoogle Scholar
  27. Kuffler, S. W., and C. Edwards: Mechanism of gamma-aminobutyric acid (GABA) action and its relation to synaptic inhibition. J. Neurophysiol. 21, 586–610 (1958).Google Scholar
  28. Matsui, K.: The electrocardiogram of the lobster Panulirus japonicus. Sci. Repts. Tokyo Kyoiku Daigaku B 8, 139–164 (1955).Google Scholar
  29. Matsui, K.: Spontaneous discharges of the isolated ganglion trunk of the lobster heart (Panulirus japonicus). II. Effect of some ions. Sci. Repts. Tokyo Kyoiku Daigaku B 8, 108–133 (1957).Google Scholar
  30. Maynard, D. M.: Activity in a crustacean ganglion. I. Cardioinhibition and acceleration in Panulirus argus. Biol. Bull. 164, 156–170 (1953 a).CrossRefGoogle Scholar
  31. Maynard, D. M.: Integration in the cardiac ganglion of Homarus. Biol. Bull. 105, 367 (1953b).Google Scholar
  32. Maynard, D. M.: Inhibition in a single ganglion. Federation Proc. 12, 95 (1953 c).Google Scholar
  33. Maynard, D. M.: Direct inhibition in the lobster cardiac ganglion. Ph. D. dissertation 72 pp. University of California, Los Angeles (1955 a).Google Scholar
  34. Maynard, D. M.: Activity in a crustacean ganglion. II. Pattern and interaction in burst formation. Biol. Bull. 109, 420–436 (1955b).CrossRefGoogle Scholar
  35. Maynard, D. M.: Action of drugs on lobster cardiac ganglion. Federation Proc. 17, 106 (1958).Google Scholar
  36. Maynard, D. M.: Circulation and heart function, in The physiology of crustacea. Edited by T. H. Waterman. Vol. I, Academic Press, New York and London, p. 161–226 (1960).Google Scholar
  37. Nusbaum, J.: Beiträge zur Kenntnis der Innervation des Gefäßsystems nebst einigen Bemerkungen über das subepidermale Nervenzellengeflecht bei den Crustaceen. Biol. zentr. 19, 700–711 (1899).Google Scholar
  38. Otani, T., and T. H. Bullock: Responses to depolarizing currents across the membrane of some invertebrate ganglion cells. Anat. Rec. 128, 599 (1957).Google Scholar
  39. Otani, T., and T. H. Bullock: Effects of presetting the membrane potential of the soma of spontaneous and integrative ganglion cells. Physiol. Zool. 32, 104–114 (1959).Google Scholar
  40. Preston, J. B., and D. Kennedy: Integrative synaptic mechanisms in the caudal ganglion of the crayfish. J. Gen. Physiol. 43, 671–681 (1960).PubMedCrossRefGoogle Scholar
  41. Smith, R. I.: The action of electrical stimulation and of certain drugs on cardiac nerves of the crab Cancer irroratus. Biol. Bull. 93, 72–88 (1947).PubMedCrossRefGoogle Scholar
  42. Suzuki, S.: Ganglion cells in the heart of Ligia exotica (Roux). Sci. Repts. Tohoku Imp. Univ. Fourth Ser. 9, 214–218 (1934).Google Scholar
  43. Suzuki, S.: On the presence of ganglion cells in some crustacean hearts. Sci. Repts. Tohoku Imp. Univ. Fourth Ser. 10, 417–426 (1935).Google Scholar
  44. Tauc, L.: Interaction non-synaptique entre deux neurones adjacents du ganglion abdominal de l’Aplysie. C. R. Acad. Sci. 248, 1857–1859 (1959).Google Scholar
  45. Terzuolo, C. A. and T. H. Bullock: Inhibition and acceleration in some invertebrate ganglion cells. Anat. Record 128, 634 (1957).Google Scholar
  46. Terzuolo, C. A. and T. H. Bullock: Acceleration and inhibition in crustacean ganglion cells. Arch. Ital. Biol. 96, 117–134 (1958).Google Scholar
  47. Watanabe, A.: The interaction of electrical activity among neurons of lobster cardiac ganglion. Jap. J. Physiol. 8, 308–318 (1958).Google Scholar
  48. Watanabe, A. and Grundfest: Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J. Gen. Physiol, (in the press).Google Scholar
  49. Watanabe, A. and T. H. Bullock: Modulation of activity of one neuron by subthreshold slow potentials in another in lobster cardiac ganglion. J. Gen. Physiol. 43, 1031–1045 (1960).PubMedCrossRefGoogle Scholar
  50. Weidmann, S.: Elektrophysiologie der Herzmuskelfaser. Bern: Huber 1956.Google Scholar
  51. Welsh, J. H., and D. M. Maynard: Electrical activity of a single ganglion. Federation Proc. 10, 145 (1951).Google Scholar
  52. Wiersma, C. A. G., and E. Novitski: The mechanism of the nervous regulation of the crayfish heart. J. Exp. Biol. 19, 255–265 (1942).Google Scholar
  53. Wilson, D. M.: Low resistance connections between the lateral giant fibers of earthworms. in M. S. (1961).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1961

Authors and Affiliations

  • S. Hagiwara
    • 1
  1. 1.Brain Research Institute and Departments of Zoology and Anatomy, School of MedicineUniversity of California at Los AngelesLos Angeles 24USA

Personalised recommendations