Skip to main content

Vergleichende Physiologie des Energiestoffwechsels von Muskeln

  • Conference paper
Ergebnisse der Biologie

Part of the book series: Ergebnisse der Biologie / Advances in Biology ((ERGBIOL,volume 24))

Zusammenfassung

Im Vergleich zur Mannigfaltigkeit, die die Tiere in ihrer körperlichen Organisation und in ihren Leistungen darbieten, sind die Zellen und Gewebe, welche sie zur Verrichtung mechanischer Arbeit entwickelt haben, bemerkenswert einheitlich. Der Contractilität liegt stets die Anwesenheit filamentöser Elemente zugrunde, die in großer Zahl mehr oder weniger parallel zur Richtung der Kontraktion angeordnet sind. Meist sind sie zu übergeordneten Einheiten, den Myofibrillen, zusammengefaßt. Nach dem Vorhandensein oder Fehlen einer bereits mit dem Lichtmikroskop erkennbaren Periodizität werden zwei Grundtypen unterschieden, nämlich glatte und quergestreifte Muskeln. Während die letzten eine einheitliche Gruppe bilden, scheinen die ersten nur das negative Merkmal des Fehlens einer Querstreifung gemeinsam zu haben, sonst aber sehr heterogen zu sein (Mark 1956, Schlote 1957, Hanson 1957).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ADP:

Adenosindiphosphat

AMP:

Adenosinmonophosphat

ATP:

Adenosintriphosphat

CDE:

condensing enzyme

DAP:

Dihydroxyaceton-phosphat

DPN/DPNH:

Diphosphopyridin-nucleotid im oxydierten bzw. reduzierten Zustand

EN:

Enolase

GAPDH:

Glyceraldehyd-phosphat-dehydrogenase

GAP:

Glyceraldehyd-phosphat

GDH:

Glycerin-phosphat-dehydro-genase

GP:

Glycerin-phosphat

IDH:

Isocitrat-dehydrogenase

LDH:

Lactat-dehydrogenase

MDH:

Malat-dehydrogenase

TPN/TPNH:

Triphosphopyridin-nucleotid im oxydierten bzw. reduzierten Zustand

UDPG:

Uridindiphosphat-glucose

Literatur

  • Andres, R., G. Cader and K. L. Zierler: The quantitative minor role of carbohydrate in oxidative metabolism by sceletal muscle in intact man in the basal state. Measurements of oxygen and glucose uptake and carbondioxide and lactate production in the forearm. J. clin. Invest. 35, 671 (1956).

    PubMed  CAS  Google Scholar 

  • Awapara, J.: Oxidation of l-glutamic acid by rat heart. Proc. Soc. exp. Biol. (N.Y.) 83, 367 (1953).

    CAS  Google Scholar 

  • Azzone, G. F., O. Eeg-Olofson, L. Ernster, L. Luft and G. Scabolcsi: Studies on isolated human sceletal muscle mitochondria. Exp. Cell Res. 22, 415 (1961).

    PubMed  CAS  Google Scholar 

  • Baldwin, E., and W. H. Yudkin: The annelid phosphagen: with a note on Phosphagen in Echinodermata and Protochordata. Proc. roy. Soc. Lond. B. 136, 614 (1950).

    CAS  Google Scholar 

  • Barron, E. S. G., and T. N. Tahmisian: The metabolism of cockroach muscle. J. cell. comp. Physiol. 32, 57 (1948).

    CAS  Google Scholar 

  • Beinert, H., D. E. Green, P. Hele, H. Hilft, R. W. V. Korff and C. V. Ramakrishnan: The acetate activating enzyme system of heart muscle. J. biol. Chem. 203, 35 (1953).

    PubMed  CAS  Google Scholar 

  • Bennet, H. S., and K. R. Porter: An electron microscopic study of sectioned breast muscle of the domestic fowl. Amer. J. Anat. 93, 61 (1953).

    Google Scholar 

  • Bergh, S. G. VAN DEN, and E. C. Slater: The respiratory activity and respiratory control of sarcosomes isolated from the thoracic muscle of the blowfly. Biochim. biophys. Acta 40, 176 (1960).

    PubMed  Google Scholar 

  • Beutler, R.: Über den Blutzucker der Bienen. Z. vergl. Physiol. 24, 71 (1937).

    Google Scholar 

  • Bing, R. J.: The metabolism of the heart. Harvey Lectures, Ser. L, p. 27. New York 1956.

    Google Scholar 

  • Bing, R. J., u. A. Beuren: Der Stoffwechsel des Herzens. Ergebn. inn. Med. Kinderheilk. NF 11, 104 (1959).

    CAS  Google Scholar 

  • Bishai, F. R.: On some aspects of respiration in locusts. Diss. Cairo 1960.

    Google Scholar 

  • Bishai, F. R., u. E. Zebe: Enzymverteilungsmuster und Metabolitspiegel in der Beinmuskulatur der Heuschrecken. Verh. dtsch. Zool. Ges. Münster, Zool. Anz. 23, Suppl., 314 (1959).

    Google Scholar 

  • Black, E. C.: Zit. in G. I. Drummond and E. C. Black: Comparative Physiology: Fuel of muscle metabolism. Ann. Rev. Physiol. 22, 169 (1960).

    Google Scholar 

  • Blanchard, L., et G. Dinulescu: Le métabolisme glucidique chez les larves de Gastrophilus au cours de l’inanition et de l’anaerobiose. C. R. Soc. Biol. (Paris) 110, 343 (1932).

    CAS  Google Scholar 

  • Born, G. V. P.: The relation between tension and the high energy phosphate content of smooth muscle. J. Physiol. (Lond.) 131, 704 (1956).

    CAS  Google Scholar 

  • Born, G. V. P. and E. Bülbring: The effect of 2:4-dinitrophenol (DNP) on the smooth muscle of the guinea pig’s taenia coli. J. Physiol. (Lond.) 127, 626 (1955).

    CAS  Google Scholar 

  • Braekkan, O. R.: Function of the red muscle in fish. Nature (Lond.) 178, 747 (1956).

    CAS  Google Scholar 

  • Bücher, T.: Zelluläre Koordination Energietransformierender Stoffwechselketten. Vrtr. Tagung dtsch. Ges. Physiol. Chemie, Berlin 1959.

    Google Scholar 

  • Bücher, T., A. Delbrück u. E. Zebe: Unveröffentlichte Experimente, zitiert in Bücher u. Klingenberg 1958.

    Google Scholar 

  • Bücher, T., u. M. Klingenberg: Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chemie 70, 552 (1958).

    Google Scholar 

  • Bücher, T., M. Klingenberg u. E. Zebe: Diskussion des Vortrags von B. Sacktor in “Biochemistry of Insects”, Proc. 4th Int. Congr. Biochem., Vienna. 12, 153 (1958).

    Google Scholar 

  • Caldwell, P. C.: The separation of phosphate esters of muscle by paper chromatography. Biochem. J. 55, 458 (1953).

    PubMed  CAS  Google Scholar 

  • Carrol, N. V., R. W. Longley and J. H. Roe: The determination of glycogen in liver and muscle by use of anthrone reagent. J. biol. Chem. 220, 583 (1956).

    Google Scholar 

  • Chadwick, L. E.: The respiratory quotient of Drosophila in flight. Biol. Bull. 93, 229 (1947).

    PubMed  CAS  Google Scholar 

  • Chance, B.: Quantitative aspects of the control of oxygen utilization. In: CIBA Found. Symp. “Regulation of Cell Metabolism”, p. 91. London 1959.

    Google Scholar 

  • Chance, B. and C. M. Conelly: A method for the estimation of the increase in concentration of adenosine diphosphate in muscle sarcosomes following a contraction. Nature (Lond.) 179, 1235 (1957).

    CAS  Google Scholar 

  • Chance, B. and B. Sacktor: Respiratory metabolism of insect flight muscle. II. Kinetics of respiratory enzymes in flight muscle sarcosomes. Arch. Biochem. 76, 509 (1958).

    PubMed  CAS  Google Scholar 

  • Chance, B. and G. R. Williams: The respiratory chain and oxidative phosphorylation. In: Advanc. Enzymol. 17, 65 (1956).

    CAS  Google Scholar 

  • Chapman, G. B.: Electron microscopy of ultrathin sections of insect flight muscle. J. Morph. 95, 237 (1954).

    Google Scholar 

  • Chappell, J. B., and S. V. Perry: The respiratory and adenosinetriphosphatase activities of sceletal muscle mitochondria. Biochem. J. 55, 586 (1953).

    PubMed  CAS  Google Scholar 

  • Chappell, J. B., S. V. Perry: Biochemical properties of sceletal muscle mitochondria. Nature 173, 1094 (1954).

    PubMed  CAS  Google Scholar 

  • Chefurka, W.: On the importance of α-glycerophosphate dehydrogenase in glycolysing insect muscle. Biochim. biophys. Acta 28, 660 (1958).

    PubMed  CAS  Google Scholar 

  • Cochran, D. G., and K. W. King: Oxidative phosphorylation in sarcosomes from thoracic muscles of the American cockroach. Biochim. biophys. Acta 37, 562 (1960).

    PubMed  CAS  Google Scholar 

  • Cowgill, R. W.: The conversion of lobster muscle Phosphorylase a to b and Phosphorylase b to a. J. biol. Chem. 234, 3154 (1959).

    PubMed  CAS  Google Scholar 

  • Cowgill, R. W. and C. F. Cori: The conversion of inactive Phosphorylase to Phosphorylase b and Phosphorylase a in lobster muscle extract. J. biol. Chem. 216, 133 (1955).

    PubMed  CAS  Google Scholar 

  • Davey, C. L.: An ion exchange method of determining carnosine, anserine and their precursors in animal tissue. Nature (Lond.) 179, 209 (1957).

    CAS  Google Scholar 

  • Davey, C. L.: The effects of carnosine and anserine on glycolytic reactions in sceletal muscle. Arch. Biochem. 89, 296 (1960a).

    PubMed  CAS  Google Scholar 

  • Davey, C. L.: The significance of carnosine and anserine in striated sceletal muscle. Arch. Biochem. 89, 103 (1960b).

    Google Scholar 

  • Davis, J. G., and W. K. Slater: The aerobic and anaerobic metabolism of the common cockroach Periplaneta orientalis, III. Biochem. J. 22, 331 (1928).

    PubMed  CAS  Google Scholar 

  • Davis, R. A., and G. Fraenkel: The oxygen consumption of flies during flight. J. exp. Biol. 17, 402 (1940).

    CAS  Google Scholar 

  • Delbrück, A., H. Schimassek, K. Bartsch u. T. Bücher: Enzym-Verteilungsmuster in einigen Organen und experimentellen Tumoren der Ratte und der Maus. Biochem. Z. 331, 297 (1959).

    Google Scholar 

  • Delbrück, A., E. Zebe u. T. Bücher: Über Verteilungsmuster von Enzymen des Energie liefernden Stoffwechsels im Flugmuskel, Sprungmuskel und Fettkörper von Locusta migratoria und ihre cytologische Zuordnung. Biochem. Z. 331, 273 (1959).

    Google Scholar 

  • Dubowitz, V., and A. G. E. Pearse: A comparative histochemical study of oxidative enzyme and Phosphorylase activity in sceletal muscle. Histochemie 2, 105 (1960).

    PubMed  CAS  Google Scholar 

  • Edwards, G. A.: Comparative studies on the fine structure of motor units. 4. Int. Congr. Elektronenmikroskopie II, p. 301 (1958).

    Google Scholar 

  • Edwards, G. A. and H. Ruska: The function and metabolism of certain insect muscles in relation to their structure. Quart. J. micr. Sci. 96, 151 (1955).

    Google Scholar 

  • Edwards, G. A., H. Ruska, R. de Souza Santos and A. Vallejo-Freire: Comparative cytophysiology of striated muscle with special reference of the endoplasmatic reticulum. J. biophys. biochem. Cytol. 2, 143 (1956).

    PubMed  Google Scholar 

  • Ennor, A. H., and J. F. Morrison: Biochemistry of Phosphagens and related guanidines. Physiol. Rev. 38, 631 (1958).

    PubMed  CAS  Google Scholar 

  • Ennor, A. H., and H. Rosenberg: Determination and distribution of phosphocreatine in animal tissues. Biochem. J. 51, 606 (1952).

    PubMed  CAS  Google Scholar 

  • Estabrook, R. W., and B. Sacktor: The respiratory metabolism of insect flight muscle. III. Low temperature spectra of the cytochromes of flight muscle sarcosomes. Arch. Biochem. 76, 532 (1958a).

    PubMed  CAS  Google Scholar 

  • Estabrook, R. W., and B. Sacktor: α-Glycerophosphate oxidase of flight muscle mitochondria. J. biol. Chem. 233, 1014 (1958b).

    PubMed  CAS  Google Scholar 

  • Farrant, J. L., and E. H. Mercer: Studies on the structure of muscle. II. Arthropod muscle. Exp. Cell Res. 3, 553 (1952).

    CAS  Google Scholar 

  • Fawaz, G., and E. S. Hawa: Phosphocreatine content of mammalian cardiac muscle. Proc. Soc. exp. Biol. (N. Y.) 84, 277 (1953).

    CAS  Google Scholar 

  • Fawcett, D. W., and C. C. Selby: Observations on the fine structure of the turtle atrium. J. biophys. biochem. Cytol. 4, 63 (1958).

    PubMed  CAS  Google Scholar 

  • Fischer, E. H., and E. G. Krebs: Conversion of Phosphorylase b to Phosphorylase a in muscle extracts. J. biol. Chem. 216, 121 (1955).

    PubMed  CAS  Google Scholar 

  • Fleckenstein, A., u. J. Janke: Papierchromatische Trennung von ATP, ADP und anderen Phosphorverbindungen im kontrahierten und erschlafften Froschmuskel. Pflügers Arch. ges. Physiol. 258, 177 (1953).

    CAS  Google Scholar 

  • Fleckenstein, A., u. J. Janke, R. E. Davies and H. A. Krebs: Contraction of muscle without fission of adenosine triphosphate or creatine phosphate. Nature (Lond.) 154, 1081 (1954).

    Google Scholar 

  • Fuld, M., and M. H. Paul: Cyclophorase system. XXIV. Oxidation of pyruvate to acetate in rabbit heart muscle. Proc. Soc. exp. Biol. (N. Y.) 79, 355 (1952).

    CAS  Google Scholar 

  • Fulton, R. A., and V. E. Romney: The chloroform soluble components of beet leafhoppers as an indication of the distance they move in the spring. J. Agric. Res. 61, 737 (1940).

    CAS  Google Scholar 

  • George, J. C., and N. M. G. Bhakthan: Lipase activity in the thoracic muscles of the beetle (Heliocopris bucephalus). Naturwissenschaften 47, 602 (1960 a).

    CAS  Google Scholar 

  • George, J. C. and N. M. G. Bhakthan: A study on the fiber diameter and certain enzyme concentrations in the flight muscles of some butterflies. J. exp. Biol. 37, 308 (1960b).

    CAS  Google Scholar 

  • George, J. C. and D. Jyoti: The lipid content and its reduction in muscle and liver during long and sustained activity. J. Anim. Morph. Physiol. 2, 1 (1955a).

    Google Scholar 

  • George, J. C. and D. Jyoti: Histological features of the breast and leg muscles of bird and bat and their physiological and evolutionary significance. J. Anim. Morph. Physiol. 2, 10 (1955b).

    Google Scholar 

  • George, J. C. and D. Jyoti: Studies on the structure and physiology of flight muscle of birds. 2. The relative reduction of fat and glycogen in the pectoralis major during sustained activity. J. Anim. Morph. Physiol. 4, 119 (1957).

    Google Scholar 

  • George, J. C. and D. Jyoti: Studies on the structure and physiology of the flight muscles of bat. 2. The relative reduction of fat and glycogen in the pectoralis major muscle during sustained activity. J. Anim. Morph. Physiol. 5, 57 (1958).

    CAS  Google Scholar 

  • George, J. C. and R. M. Naik: Studies on the structure and physiology of the flight muscles of bats. 1. The occurrence of two types of fibres in the pectoralis major muscle of the bat (Hipposideros speoris), their relative distribution, nature of fuel and mitochondrial content. J. Anim. Morph. Physiol. 4, 96 (1957).

    Google Scholar 

  • George, J. C. and R. M. Naik: Studies on the structure and physiology of the flight muscles of birds. 5. Some histological and histochemical observations on the structure of the pectoralis. J. Anim. Morph. Physiol. 6, 16 (1959a).

    CAS  Google Scholar 

  • George, J. C. and R. M. Naik: Studies on the structure and physiology of the flight muscles of birds. 4. Observations on the fibre architecture of the pectoralis major muscle of the pigeon. Biol. Bull. 116, 239 (1959b).

    Google Scholar 

  • George, J. C. and K. S. Scaria: On the occurrence of lipase in the sceletal muscles of vertebrates and its possibles significance in sustained muscular activity. J. Anim. Morph. Physiol. 3, 91 (1956).

    CAS  Google Scholar 

  • George, J. C. and K. S. Scaria: A histochemical study of dehydrogenase activity in the pectoralis major muscle of the pigeon and certain other vertebrate sceletal muscles. Quart. J: micr. Sci. 99, 469 (1958 a).

    CAS  Google Scholar 

  • George, J. C. and K. S. Scaria: Histochemical demonstration of lipase in the pectoralis major muscle of the pigeon. Nature (Lond.) 181, 783 (1958b).

    CAS  Google Scholar 

  • George, J. C., A. K. Susheela and K. S. Scaria: Studies on the structure and physiology of the flight muscles of bats. 3. Alkaline phosphatase and succinic dehydrogenase activity in the breast muscle. A histochemical study. J. Anim. Morph. Physiol. 5, 110 (1958a).

    Google Scholar 

  • George, J. C., A. K. Susheela and K. S. Scaria: A quantitative and histochemical study of lipase activity in the pectoralis major muscle of the bat. Naturwissenschaften 45, 93 (1958b).

    CAS  Google Scholar 

  • George, J. C., N. V. Vallyathan and K. S. Scaria: Lipase activity in insect flight muscle. Experientia (Basel) 14, 250 (1958).

    CAS  Google Scholar 

  • Ghiretti, F., A. Ghiretti-Magaldi and L. Tosi: Pathways of terminal respiration in marine invertebrates. II. The cytochrome system of Aplysia. J. gen. Physiol. 42, 1185 (1959).

    PubMed  CAS  Google Scholar 

  • Ghiretti-Magaldi, A., A. Guiditta and F. Ghiretti: Pathways of terminal respiration in marine invertebrates. I.The respiratory system in cephalopods. J. cell. comp. Physiol. 52, 389 (1958).

    CAS  Google Scholar 

  • Gilmour, D.: Localization of the magnesium activated apyrase of insect muscle in the sarcosomes. Austr. J. biol. Sci. 6, 586 (1953).

    CAS  Google Scholar 

  • Gilmour, D. and J. H. Calaby: The magnesium-activated apyrase of insect muscle. Arch. Biochem. 41, 83 (1952).

    PubMed  CAS  Google Scholar 

  • Gilmour, D. and J. H. Calaby: Myokinase and pyrophosphatase in insect muscle. Enzymologia 16, 34 (1953).

    PubMed  CAS  Google Scholar 

  • Gonda, O., A. Traub and Y. Avi-Dor: The oxidation of particulate fractions from mosquitoes. Biochem. J. 67, 487 (1957).

    PubMed  CAS  Google Scholar 

  • Goodall, M. C.: Carnosine phosphate as phosphate donor in muscular contraction. Nature (Lond.) 178, 539 (1956).

    CAS  Google Scholar 

  • Goodale, W. T., M. Lubin, J. E. Eckenhoff, J. Hafkenschiel and W. G. Banfield: Coronary sinus catherization for studying coronary blood flow and myocardial metabolism. Amer. J. Physiol. 152, 340 (1948).

    PubMed  CAS  Google Scholar 

  • Green, D. E.: α-Glycerophosphate dehydrogenase. Biochem. J. 30, 629 (1936).

    PubMed  CAS  Google Scholar 

  • Green, D. E.: Electron transport and oxidative phosphorylation. Advanc. Enzymol. 21, 73 (1959).

    Google Scholar 

  • Green, D. E. and Y. Hatefi: The mitochondrion and biochemical machines. Science 133, 13 (1961).

    PubMed  CAS  Google Scholar 

  • Gregg, C. T., C. R. Heisler and L. F. Remmert: Pyruvate and α-glycerophosphate oxidation in insect tissue. Biochim. biophys. Acta 31, 593 (1959).

    PubMed  CAS  Google Scholar 

  • Gregg, C. T., C. R. Heisler and L. F. Remmert: Oxidative phosphorylation and respiratory control in housefly mitochondria. Biochim. biophys. Acta 45, 561 (1960).

    PubMed  CAS  Google Scholar 

  • Hanson, J.: The structure of the smooth muscle fibres in the body wall of the earthworm. J. biophys. biochem. Cytol. 3, 111 (1957).

    PubMed  CAS  Google Scholar 

  • Harman, J. W., and M. Feiglson: Studies on mitochondria. IV. The cytological localization of mitochondria in heart muscle. Exp. Cell Res. 3, 47 (1952).

    CAS  Google Scholar 

  • Harvey, G. T., and S. Beck: Muscle succinoxidase in the American cockroach. J. biol. Chem. 201, 765 (1953).

    PubMed  CAS  Google Scholar 

  • Hatefi, Y., and R. L. Lester: Studies on the mechanism of oxidative phosphorylation. III. Phosphorylating particle types from beef heart. Biochim. biophys. Acta 27, 83.

    Google Scholar 

  • Hele, P.: The acetate activating enzyme of beef heart. J. biol. Chem. 206, 671 (1954).

    PubMed  CAS  Google Scholar 

  • Hodge, A. J.: Studies on the structure of muscle. III. Phase contrast and electron microscopy of dipteran flight muscle. J. biophys. biochem. Cytol. 1, 361 (1955).

    PubMed  CAS  Google Scholar 

  • Hohorst, H. J., F. H. Kreutz u. T. Bücher: Über Metabolitgehalte und Metabolit-konzentrationen in der Leber der Ratte. Biochem. Z. 332, 18 (1959).

    PubMed  CAS  Google Scholar 

  • Hoskins, D. D., V. H. Cheldelin and R. W. Newburgh: Oxidative enzyme systems of the honey bee, Apis mellifera. J. gen. Physiol. 59, 705 (1956).

    Google Scholar 

  • Hulsmans: Zit. in E. C. Slater: Biochemistry of sarcosomes. In “Structure and Function of Muscle”, Vol. II, p. 131 (G. H. Bourne, ed.). New York und London: 1960.

    Google Scholar 

  • Humphrey, G. F., and L. Siggins: Glycolysis in the wing muscle of the grasshopper, Locusta migratoria. Aust. J. exp. Biol. med. Sci. 27, 353 (1949).

    PubMed  CAS  Google Scholar 

  • Jagannathan, V., and R. S. Schweet: Pyruvic acid oxidase of pigeon breast muscle. I. Purification and properties of the enzyme. J. biol. Chem. 196, 551 (1952).

    PubMed  CAS  Google Scholar 

  • Jampol’skaja, L. I., u. N. N. Jakovlev: Der Kohlenhydrat-Phosphorstoffwechsel in den Muskeln bei Belastungen verschiedenen Charakters und beim Training. Fiziol. Ž. 37, 110 (1951); ref. in Ber. ges. Physiol. 151 (1952).

    Google Scholar 

  • Jones, N. R., and J. Murray: The acid-soluble nucleotides of codling (Gadus callarias) muscle. Biochem. J. 77, 567 (1960).

    PubMed  CAS  Google Scholar 

  • Jongbloed, J., u. A. G. Wiersma: Der Stoffwechsel der Honigbiene während des Fliegens. Z. vergl. Physiol. 21, 519 (1934).

    CAS  Google Scholar 

  • Kare, M. R.: Phosphocreatine in red and white muscle. Proc. Soc. exp. Biol. (N. Y.) 77, 692 (1951).

    CAS  Google Scholar 

  • Kenney, J. W., and A. G. Richards: Differences between leg and flight muscle of the giant water bug, Lethocerus americanus. Entom. News 66, 29 (1955).

    Google Scholar 

  • Khairallah, P. A., and W. F. H. M. Mommaerts: Nucleotide metabolism in cardiac activity. I. Methods and initial observations. Circulat. Res. 1, 8 (1953).

    PubMed  CAS  Google Scholar 

  • Kisch, B.: Studies in comparative electronmicroscopy of the heart. I. Pipefish and bat. Exp. Med. Surg. 12, 335 (1954).

    PubMed  CAS  Google Scholar 

  • Kisch, B.: An electron microscopic comparison of different striated muscles. Exp. Med. Surg. 14, 273 (1956).

    Google Scholar 

  • Klingenberg, M., u. T. Bücher: Flugmuskelmitochondrien aus Locusta migratoria mit Atmungskontrolle. Aufbau und Zusammensetzung der Atmungskette. Biochem. Z. 331, 312 (1959).

    CAS  Google Scholar 

  • Klingenberg, M., u. T. Bücher: Biological oxidations. Ann. Rev. Biochem. 29, 669 (1960).

    PubMed  CAS  Google Scholar 

  • Klingenberg, M. u. P. Schollmeyer: Zur Reversibilität der oxydativen Phosphorylierung. Adenosintriphosphat-abhängige Atmungskontrolle und Reduktion von Diphosphopyridinnucleotid in Mitochondrien. Biochem. Z. 333, 335 (1960).

    PubMed  CAS  Google Scholar 

  • Klingenberg, M., W. Slenczka u. E. Ritt: Vergleichende Biochemie der Pyridinnucleotidsysteme in Mitochondrien verschiedener Organe. Biochem. Z. 332, 47 (1959).

    PubMed  CAS  Google Scholar 

  • Kosmin, N. P., W. W. Alpatov u. M. S. Resnitschenko: Zur Kenntnis des Gaswechsels und des Energieverbrauchs der Biene in Beziehung zu deren Aktivität. Z. vergl. Physiol. 17, 408 (1932).

    Google Scholar 

  • Krebs, E. G., and E. H. Fischer: Phosphorylase activity of sceletal muscle extracts. J. biol. Chem. 216, 113 (1955).

    PubMed  CAS  Google Scholar 

  • Krogh, A., and T. Weis-Fogh: The respiratory exchange of the desert locust (Schistocerca gregaria) before, during and after flight. J. exp. Biol. 28, 342 (1951).

    Google Scholar 

  • Krüger, P.: Tetanus und Tonus der quergestreiften Skelettmuskeln der Wirbeltiere und des Menschen. Leipzig 1952.

    Google Scholar 

  • Kubista, V.: Accumulation of a stable phosphorus compound in glycolysing insect muscle. Nature (Lond.) 180, 549 (1957).

    CAS  Google Scholar 

  • Kubista, V.: Anaerobe Glykolyse in den Insektenmuskeln. Biochem. Z. 330, 315 (1958).

    PubMed  CAS  Google Scholar 

  • Lange, G.: Über die Dephosphorylierung von Adenosintriphosphat zu Adenosin-diphosphat während der Kontraktionsphase von Froschrectusmuskeln. Biochem. Z. 326, 172 (1955 a).

    PubMed  CAS  Google Scholar 

  • Kubista, V.: Untersuchungen an glatten Muskeln über Änderungen im Gehalt an Adenosintriphosphat, Adenosindiphosphat, Adenosinmonophosphat und Kreatinphosphat bei der Kontraktion und Erschlaffung (Versuche an Kaninchenmagenstreifen). Biochem. Z. 326, 369 (1955b).

    Google Scholar 

  • Lawrie, R. A.: Biochemical difference between red and white muscle. Nature (Lond.) 170, 122 (1952).

    CAS  Google Scholar 

  • Lawrie, R. A.: The activity of the cytochrome system in muscle and its relation to myoglobin. Biochem. J. 55, 298 (1953).

    PubMed  CAS  Google Scholar 

  • Levenbook, L.: The mitochondria of insect flight muscle. J. Histochem. Cytochem. 1, 242 (1953).

    PubMed  CAS  Google Scholar 

  • Lewis, S. E., and K. S. Fowler: Nature and origin of an inhibitor of oxidative phosphorylation present in freshly isolated sarcosomes from blowfly thoraces. Biochim. biophys. Acta 38, 564 (1960).

    PubMed  CAS  Google Scholar 

  • Lewis, S. E., and E. C. Slater: Oxidative phosphorylation in insect sarcosomes. Biochem. J. 58, 207 (1954).

    PubMed  CAS  Google Scholar 

  • Ludwig, H. W.: Persönl. Mitt.

    Google Scholar 

  • Mark, J. S. T.: An electron microscope study of uterine smooth muscle. Anat. Rec. 125, 473 (1956).

    PubMed  CAS  Google Scholar 

  • Maruyama, K., and K. Moriwaki: Respiratory enzyme systems and muscular function in honeybee thoracic muscle. Enzymologia 19, 211 (1958).

    PubMed  CAS  Google Scholar 

  • McGinnis, A. J., V. H. Cheldelin and R. W. Newburgh: Enzyme studies of various stages of the blowfly, Phormia regina. Arch. Biochem. 63, 427 (1956).

    PubMed  CAS  Google Scholar 

  • McShan, W. H., S. Kramer and V. Schlegel: Oxidative enzymes in the thoracic muscles of the woodroach, Leucophaea maderae. Biol. Bull. 106, 341 (1954).

    CAS  Google Scholar 

  • Meyer, H., B. Preiss and S. Bauer: The oxidation of fatty acids by a particulate fraction from desert locust (Schistocerca gregaria) thorax tissues. Biochem. J. 76, 27 (1960).

    PubMed  CAS  Google Scholar 

  • Mommaerts, W. H. F. M.: Is adenosine triphosphate broken down during a single muscle twitch? Nature (Lond.) 174, 1083 (1954).

    CAS  Google Scholar 

  • Montgomery, C. M., and J. L. Webb: Metabolic studies on heart mitochondria. I. The operation of the normal tricarboxylic acid cycle in the oxidation of pyruvate. J. biol. Chem. 221, 347 (1956).

    PubMed  CAS  Google Scholar 

  • Moore, D. H., and H. Ruska: Electron microscope study of mammalian cardiac muscle cells. J. biophys. biochem. Cytol. 3, 261 (1957).

    PubMed  CAS  Google Scholar 

  • Nachmias, V. T., and H. A. Padykula: A histochemical study of normal and denervated red and white muscles of the rat. J. biophys. biochem. Cytol. 4, 47 (1958).

    PubMed  CAS  Google Scholar 

  • Nakatsugawa, T.: Spectrophotometry measurement of cytochromes in the red and white muscle of the American cockroach, Periplaneta americana. Nature (Lond.) 185, 85 (1960).

    CAS  Google Scholar 

  • Ogata, T.: A histochemical study of the red and white muscle fibers. I. Activity of succinoxidase system in muscle fibers. Acta med. Okayama 12, 216 (1958a).

    CAS  Google Scholar 

  • Ogata, T.: A histochemical study of red and white muscle fibers. II. Activity of cytochrome oxidase in muscle fibers. Acta med. Okayama 12, 228 (1958 b).

    Google Scholar 

  • Ogata, T.: A histochemical study of the red and white muscle fibers. III. Activity of the diphosphopyridine nucleotide diaphorase and triphosphopyridine nucleotide diaphorase in muscle fibers. Acta med. Okayama 12, 233 (1958c).

    Google Scholar 

  • Ortmann, R.: Versuch einer morphologisch-histochemischen Differenzierung der Muskulatur beim Frosch. Verh. anat. Ges. (49. Vers.), Anat. Anz. 98, 69 (Erg.-Bd.) (1951).

    Google Scholar 

  • Parnas, J. K., U. R. Wagner: Über den Kohlenhydratumsatz isolierter Amphibienmuskeln und über die Beziehung zwischen Kohlenhydratschwund und Milchsäurebildung im Muskel. Biochem. Z. 61, 387 (1914).

    CAS  Google Scholar 

  • Paul, M. H., F. Fuld and E. Sperling: Cyclophorasesystem. XXII. Cyclophorase-system of rabbit heart muscle. Proc. Soc. exp. Biol. (N. Y.) 79, 349 (1952).

    CAS  Google Scholar 

  • Paul, M. H. and E. Sperling: Cyclophorasesystem. XXIII. Correlation of cyclophorase activity and mitochondrial density in striated muscle. Proc. Soc. exp. Biol. (N. Y.) 79, 352 (1952).

    CAS  Google Scholar 

  • Pearson, O. P.: The metabolism of hummingbirds. Condor 52, 145 (1950).

    Google Scholar 

  • Perry, S. V.: The adenosine triphosphatase activity of lipoprotein granules isolated from sceletal muscle. Biochim. biophys. Acta 8, 499 (1952).

    PubMed  CAS  Google Scholar 

  • Pette, D.: Persönl. Mitt.

    Google Scholar 

  • Plaut, G. W. E., and K. A. Plaut: Oxidative metabolism of heart mitochondria. J. biol. Chem. 199, 141 (1952).

    PubMed  CAS  Google Scholar 

  • Poche, R.: Elektronenmikroskopische Untersuchungen zur Morphologie des Herzmuskels vom Siebenschläfer während des aktiven und des lethargischen Zustands. Z. Zellforsch. 50, 322 (1959).

    Google Scholar 

  • Polacek, I., and V. Kubista: Metabolism of the cockroach Periplaneta americana during flight. Physiol. Bohemoslov. 9, 228 (1960).

    Google Scholar 

  • Porter, K. R.: The sarcoplasmatic reticulum in muscle cells of Amblystoma larvae. J. biophys. biochem. Cytol. 2 (Suppl.), 163 (1956).

    PubMed  CAS  Google Scholar 

  • Porter, K. R. and G. E. Palade: Studies on the endoplasmatic reticulum. III. Its form and distribution in striated muscle cells. J. biophys. biochem. Cytol. 3, 269 (1957).

    PubMed  CAS  Google Scholar 

  • Price, G. M., and S. E. Lewis: Distribution of phosphorus compounds in blowfly thoracic muscle. Biochem. J. 71, 176 (1959).

    PubMed  CAS  Google Scholar 

  • Rall, T. W., W. D. Wosilait and E. W. Sutherland: The interconversion of Phosphorylase a and Phosphorylase b from dog heart muscle. Biochim. biophys. Acta 20, 69 (1956).

    PubMed  CAS  Google Scholar 

  • Rees, K. R.: Aerobic metabolism of the muscle of Locusta migratoria. Biochem. J. 58, 196 (1954).

    PubMed  CAS  Google Scholar 

  • Rey, C.: Les esters phosphores des muscles du lombric. Biochim. biophys. Acta 19, 300 (1956).

    PubMed  CAS  Google Scholar 

  • Ruska, H.: Elektronenmikroskopischer Beitrag zur Histologie des Skelettmuskels kleiner Säugetiere. Z. Naturforsch. 9 b, 358 (1954).

    Google Scholar 

  • Ruska, H., G. A. Edwards and R. Caesar: A concept of intracellular transmission of excitation by means of the endoplasmatic reticulum. Experientia (Basel) 14, 117 (1958).

    CAS  Google Scholar 

  • Sachs, J., R. V. Ganslen and J. T. Diffee: Lactic and pyruvic acid relations in frog muscle. Amer. J. Physiol. 177, 113 (1954).

    Google Scholar 

  • Sacktor, B.: The cytochrome c-oxidase of the housefly, Musca domestica. J. gen. Physiol. 35, 397 (1951).

    Google Scholar 

  • Sacktor, B.: Investigations on the mitochondria of the housefly, Musca domestica. I. Adeno-sintriphosphatases. J. gen. Physiol. 36, 371 (1953a).

    PubMed  CAS  Google Scholar 

  • Sacktor, B.: Investigations on the mitochondria of the housefly, Musca domestica. II. Oxidative enzymes with special reference to malic oxidase. Arch. Biochem. 45, 349 (1953).

    PubMed  CAS  Google Scholar 

  • Sacktor, B.: Investigations on the mitochondria of the housefly, Musca domestica. III. Requirements for oxidative phosphorylation. J. gen. Physiol. 37, 343 (1954).

    PubMed  CAS  Google Scholar 

  • Sacktor, B.: Cell structure and the metabolism of insect flight muscle. J. biophys. biochem. Cytol. 1, 1 (1955).

    Google Scholar 

  • Sacktor, B.: A biochemical basis of flight muscle activity. Proc. 4th Int. Congr. Biochem., Vienna 12, 138 (1958).

    Google Scholar 

  • Sacktor, B.: The role of mitochondria in respiratory metabolism of flight muscle. Ann. Rev. Entom. 6, 103 (1961).

    PubMed  CAS  Google Scholar 

  • Sacktor, B. and D. G. Cochran: DPN specific α-glycerophosphate dehydrogenase in insect flight muscle. Biochim. biophys. Acta 25, 649 (1957 a).

    PubMed  CAS  Google Scholar 

  • Sacktor, B. and D. G. Cochran: Dephosphorylation of nucleotides by insect flight muscle. J. biol. Chem. 226, 241 (1957b).

    PubMed  CAS  Google Scholar 

  • Sacktor, B. and D. G. Cochran: The respiratory metabolism of insect flight muscle. I. Manometric studies of oxidation and concomitant phosphorylation with sarcosomes. Arch. Biochem. 74, 266 (1958).

    PubMed  CAS  Google Scholar 

  • Schimassek, H.: Enzymatische Analyse der glatten Muskulatur im Vergleich zu anderen Muskelgeweben unter dem Aspekt der embryologischen Zuordnung. Biochem. Z. 333, 463 (1961).

    PubMed  CAS  Google Scholar 

  • Schlote, F. W.: Die Myofilamente glatter Muskulatur und ihr Verhältnis zu den Myofilamenten quergestreifter Muskulatur. Eine elektronenmikroskopische Studie an Muskelzellen der Weinbergschnecke. Z. Naturforsch. 12b, 647 (1957).

    Google Scholar 

  • Schweet, R. S., M. Fuld, K. Cheslock and M. H. Paul: Initial stages of pyruvate oxidation. In „Phosphorus metabolism“, Vol. I, p. 246. (W. D. McElroy and B. Glass, eds.). Baltimore 1951.

    Google Scholar 

  • Schweet, R. S., B. Kashman, R. M. Bock and V. J. Jannathan: Pyruvic acid oxidase of pigeon breast muscle. II. Physicochemical studies. J. biol. Chem. 196, 563 (1952).

    PubMed  CAS  Google Scholar 

  • Shipp, J. C., L. H. Opie and D. Challoner: Fatty acid and glucose metabolism in the perfused heart. Nature (Lond.) 189, 1018 (1961).

    CAS  Google Scholar 

  • Siess, M., u. D. Pette: Die Lokalisation des Glykogens in quergestreifter Muskulatur von Locusta migratoria. Biochem. Z. 332, 495 (1960).

    PubMed  CAS  Google Scholar 

  • Slater, E. C.: Biochemistry of sarcosomes. In “Structure and function of muscle”, Vol. II. p. 105. (G. H. Bourne, ed.). New York und London 1960.

    Google Scholar 

  • Sotavalta, O.: The flight-tone (wing-stroke frequency) of insects. Acta ent. fenn. 4, 1 (1947).

    Google Scholar 

  • Sotavalta, O.: Recordings of high wing-stroke and thoracic vibration frequency in some midges. Biol. Bull. 104, 439 (1953).

    Google Scholar 

  • Stenger, R. J., and D. Spiro: The ultra structure of mammalian cardiac muscle. J. biophys. biochem. Cytol. 9, 325 (1961).

    PubMed  CAS  Google Scholar 

  • Stern, J. R.: Cristalline β-hydroxybutyryl dehydrogenase from pig heart. Biochim. biophys. Acta 26, 448 (1957).

    PubMed  CAS  Google Scholar 

  • Stern, J. R. and A. DEL Campillo: Enzymatic reactions of crotonyl coenzyme A. J. Amer. chem. Soc. 75, 2277 (1955).

    Google Scholar 

  • Tiegs, O. W.: The flight muscles of insects—their anatomy and histology; with some observations on the structure of striated muscle in general. Phil. Trans. B 238, 221 (1955).

    Google Scholar 

  • Thimann, V., and H. A. Padykula: Some histochemical properties of normal and denervated red and white muscle fibers in the rat. Anat. Rec. 121, 419 (1955).

    Google Scholar 

  • Thorn, W., J. Heimann, B. Müldener u. G. Gercken: Beitrag zum Stoffwechsel von Leber, Niere, Herz und Skeletmuskulatur in Asphyxie, Anoxie und bei Hypothermie. Pflügers Arch. ges. Physiol. 265, 34 (1957).

    CAS  Google Scholar 

  • Thorn, W., J. Heimann, B. Müldener, W. Isselhard u. G. Gercken: Herzstoffwechsel in Abhängigkeit von Versuchsanordnung, Gewebsgewinnung und anoxischer Belastung. Pflügers Arch. ges. Physiol. 269, 214 (1959).

    CAS  Google Scholar 

  • Villar-Palasi, C., and J. Larner: Levels of activity of the enzymes of the glycogen cycle in rat tissues. Arch. Biochem. 86, 270 (1960).

    PubMed  CAS  Google Scholar 

  • Vogell, W., F. R. Bishai, T. Bücher, M. Klingenberg, D. Pette u. E. Zebe: Über strukturelle und enzymatische Muster in Muskeln von Locusta migratoria. Biochem. Z. 332, 81 (1959).

    CAS  Google Scholar 

  • Waalas, O., and E. Waalas: The content of adenosinetriphosphate and creatine-phosphate in uterine muscle of rats and rabbits. Acta physiol. scand. 21, 1 (1950).

    Google Scholar 

  • Wachstein, M., and E. Meisel: The distribution of demonstrable succinic dehydrogenase and of mitochondria in tongue and sceletal muscle. J. biophys. biochem. Cytol. 1, 483 (1955).

    PubMed  CAS  Google Scholar 

  • Watanabe, M. I., and C. M. Williams: Mitochondria in the flight muscle of insects. I. Chemical composition and enzymatic content. J. gen. Physiol. 34, 675 (1951).

    PubMed  CAS  Google Scholar 

  • Watzka, M.: „Weiße“ und „rote“ Muskeln. Z. mikr.-anat. Forsch. 45, 668 (1939).

    Google Scholar 

  • Weinstein, H. J.: An electron microscope study of cardiac muscle. Exp. Cell Res. 7, 130 (1954).

    PubMed  CAS  Google Scholar 

  • Weis-Fogh, T.: Fat combustion and metabolic rate of flying locusts, Schistocerca gregaria. Phil. Trans. B 237, 1 (1952a).

    CAS  Google Scholar 

  • Weis-Fogh, T.: Weight economy of flying insects. Transact. 9th Int. Congr. Entomol. 1, 341 (1952b).

    Google Scholar 

  • Wieland, O., O. Reinwein u. F. Lynen: Die Verteilung der Enzyme des Fettsäure-cyclus im tierischen und menschlichen Organismus. In “Biochemical Problems of Lipid Metabolism”, p. 155. London 1955.

    Google Scholar 

  • Wigglesworth, V. B.: The utilization of reserve substances in Drosophila during flight. J. exp. Biol. 26, 150 (1949).

    PubMed  CAS  Google Scholar 

  • Williams, C. M., L. A. Barnes and W. H. Sawyer: The utilization of glycogen by flies during flight and some aspects of the physiological ageing of Drosophila. Biol. Bull. 84, 263 (1943).

    CAS  Google Scholar 

  • Winteringham, F. P. W.: Phosphorylated compounds in the head and thoracic tissues of the adult housefly, Musca domestica, during flight, rest, anoxia and starvation. Biochem. J. 75, 38 (1960).

    PubMed  CAS  Google Scholar 

  • Wojtczak, L., and A. B. Wojtczak: Uncoupling of oxidative phosphorylation and inhibition of ATP-Pi exchange by a substance from insect mitochondria. Biochim. biophys. Acta 39, 277 (1960).

    PubMed  CAS  Google Scholar 

  • Zebe, E.: Über den respiratorischen Quotienten der Lepidopteren. Naturwissenschaften 40, 298 (1953).

    CAS  Google Scholar 

  • Zebe, E.: Über den Stoffwechsel der Lepidopteren. Z. vergl. Physiol. 36, 290 (1954).

    Google Scholar 

  • Zebe, E.: Die α-Glycerophosphat-Oxydation des Heuschreckenflugmuskels. Experientia (Basel) 12, 68 (1956a).

    CAS  Google Scholar 

  • Zebe, E.: Studies on glycolytic enzymes in insect muscle. Proc. 10th Int. Congr. Entomol. 2, 371 (1956b).

    Google Scholar 

  • Zebe, E.: Die Verteilung von Enzymen des Fettstoffwechsels im Heuschreckenkörper. Verh. dtsch. Zool. Ges. Münster, Zool. Anz. 23, (Suppl.) 309 (1959).

    Google Scholar 

  • Zebe, E.: Condensing enzyme und β-Keto-acyl-thiolase in verschiedenen Muskeln. Biochem. Z. 332, 328 (1960).

    PubMed  CAS  Google Scholar 

  • Zebe, E.: Unveröffentl. Ergebn. (1961).

    Google Scholar 

  • Zebe, E., A. Delbrück u. T. Bücher: Glycerophosphat-dehydrogenase unter zellphysiologischen Aspekten. Verh. dtsch. Ges. Physiol. Chemie, Hamburg 1956. Ber. ges. Physiol. 189, 115 (1957).

    Google Scholar 

  • Zebe, E., A. Delbrück u. T. Bücher: Über den Glycerin-1-P-Cyclus im Flugmuskel von Locusta migratoria. Biochem. Z. 331, 254 (1959).

    CAS  Google Scholar 

  • Zebe, E., and W. H. McShan: Lactic and α-glycerophosphate dehydrogenases in insects. J. gen. Physiol. 40, 15 (1957).

    Google Scholar 

  • Zierler, K. L., and R. Andres: Carbohydrate metabolism in intact sceletal muscle during night. J. clin. Invest. 39, 991 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hansjochem Autrum E. Bünning K. v. Frisch E. Hadorn A. Kühn E. Mayr A. Pirson J. Straub H. Stubbe W. Weidel

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this paper

Cite this paper

Zebe, E. (1961). Vergleichende Physiologie des Energiestoffwechsels von Muskeln. In: Autrum, H., et al. Ergebnisse der Biologie. Ergebnisse der Biologie / Advances in Biology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94805-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94805-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02649-5

  • Online ISBN: 978-3-642-94805-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics