Skip to main content

Abstract

Current ideas maintain that the first step in the chemical path of photosynthesis is a carboxylation process. At present we do not know for certain whether this carboxylation uses free CO2, HCO 3 ions or both. It is, however, necessary to distinguish decisively between the carbon source used during this carboxylation process and the carbon source assimilated from outside by the cell. They do not necessarily have to be identical. Although, e.g., in terrestrial plants, free CO2 exclusively is assimilated, the carboxylation does possibly use HCO 3 ions. The presence of carbonic anhydrase in the cells makes such an arrangement possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Angelstein, U.: Über die Kohlensäureassimilation submerser Wasserpflanzen in Bikarbonat- und Karbonatlösungen. Beitr. Biol. Pflanz. 10, 87–117 (1910).

    Google Scholar 

  • Arens, K.: Zur Kenntnis der Karbonatassimilation der Wasserpflanzen. Planta (Berl.) 10, 814–816 (1930).

    Article  Google Scholar 

  • Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen. I. Planta (Berl.) 20, 621–658 (1933).

    Google Scholar 

  • Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen. II. Die Ca(HC03)2-Assimilation. Jb. wiss. Bot. 83, 513–560 (1936a).

    Google Scholar 

  • Photosynthese von Wasserpflanzen in Kaliumbikar-bonatlösungen. Jb. wiss. Bot. 83, 561–566 (1936b).

    Google Scholar 

  • Benecke, W.: Beiträge zum Problem der Kohlensäureassimilation. Z. Bot. 13, 417–460 (1921).

    CAS  Google Scholar 

  • Bode, H. R.: Untersuchungen über die Abhängigkeit der Atmungsgröße von der H-Ionenkonzentration bei einigen Spirogyra-Arten. Jb. wiss. Bot. 65, 352–387 (1926).

    Google Scholar 

  • Bradfield, J. R. G.: Plant carbonic anhydrase. Nature (Lond.) 159, 467–468 (1947).

    Article  CAS  Google Scholar 

  • Briggs, G. E., and C. P. Whittingham: Factors affecting the rate of photosynthesis of low concentration of carbon dioxide and in high illumination. New Phytologist 51, 236 (1952).

    Article  CAS  Google Scholar 

  • Brown, T. E., and C. Eyster: Carbonic anhydrase in certain species of plants. Ohio J. Sci. 55, 257–262 (1955).

    Google Scholar 

  • Dahm, p.: Beziehungen der Sphagneen und einiger untergetauchten Wasserpflanzen zum Kalkkarbonat. Jb. wiss. Bot. 65, 314–351 (1926).

    CAS  Google Scholar 

  • Day, R., and J. Franklin: Plant carbonic anhydrase. Science 104, 363–365 (1946).

    Article  CAS  Google Scholar 

  • Egle, K., u. W. Schenk: Untersuchungen über die Reassimilation der Atmungskohlensäure bei der Photosynthese der Pflanzen. Beitr. Biol. Pflanz. 29, 75–105 (1952).

    CAS  Google Scholar 

  • Emerson, R., and L. Green: Effect of hydrogen-ion concentration on Chlorella photosynthesis. Plant Physiol. 13, 159–168 (1938).

    Article  Google Scholar 

  • Gessner, F.: Untersuchungen über Assimilation und Atmung submerser Wasserpflanzen. Jb. wiss. Bot. 85, 267–526 (1937).

    CAS  Google Scholar 

  • Hoover, W. H., E. S. Johnston and F. S. Brackett: Carbon dioxide assimilation in a higher plant. Smithsonian Inst. Publ. Misc. Coll. 87, No 16, 1933.

    Google Scholar 

  • Iversen, J.: Studien über die Ph-Verhältnisse dänischer Gewässer und ihren Einfluß auf die Hydrophyten-Vegetation. Bot. Tidsskr. 40, 277–333 (1929).

    Google Scholar 

  • James, W. O.: Experimental researches on vegetable assimilation and respiration. XIX. The effect of variation of carbon dioxide supply upon the rate of assimilation of submerged water plants. Proc. roy. Soc. B 103, 1–42 (1928).

    Article  CAS  Google Scholar 

  • Lookeren Campagne, R. N. van: On the influence of carbon dioxide and bicarbonate on the photosynthesis in Vallisneria spiralis. Proc. kon. ned. Akad. Wet., Ser. C 58, 548–553 (1955).

    Google Scholar 

  • Lowenhaupt, B.: The transport of calcium and other cations in submerged aquatic plants. UCRL-3247 (U.S. Atomic Energy Commission) 1955.

    Google Scholar 

  • Active cation transport in submerged aquatic plants. I. Effect of light upon the absorption and excretion of calcium by Potamogeton crispus (L.) leaves. UCRL-3460 (U.S. Atomic Energy Commission) 1956.

    Google Scholar 

  • Meldrum, N. U., and F. J. W. Roughton: Some properties of carbonic anhydrase, the CO2 enzyme present in blood. J. Physiol. (Lond.) 75, 15–16 (1932).

    CAS  Google Scholar 

  • Mommaerts, W. F. H. M.: The possible occurrence of carbonic anhydrase in green leaves. Proc. Acad. Sci. Amsterd. 43, 1044–1049 (1940).

    CAS  Google Scholar 

  • Nathansohn, A.: Über die Bedingungen der Kohlensäureassimilation in natürlichen Gewässern, insbesondere im Meere. Ber. Verh. sächs. Ges. Wiss. Leipzig, math.-phys. Kl. 59, 211–227 (1907).

    Google Scholar 

  • Neish, A. C: Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. J. 33, 300–308 (1939).

    PubMed  CAS  Google Scholar 

  • Österlind, S.: Influence of low bicarbonate concentration on the growth of a green alga. Nature (Lond.) 161, 319–320 (1948a).

    Article  Google Scholar 

  • The retarding effect of high concentrations of carbon dioxide and carbonate ions on the growth of a green alga. Physiol. Plantarum (Cph.) 1, 170–175 (1948b).

    Google Scholar 

  • Growth conditions of the alga Scenedesmus quadricauda with special reference to the inorganic carbon sources. Symb. bot. upsal. 10, 1–141 (1949).

    Google Scholar 

  • Inorganic carbon sources of green algae. I. Growth experiments with Scenedesmus quadricauda and Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 3, 353–360 (1950).

    Google Scholar 

  • III. Measurements of photosynthesis in Scenedesmus quadricauda and Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 4, 242–254 (1951a).

    Google Scholar 

  • IV. Photoactivation of some factor necessary for bicarbonate assimilation. Physiol. Plantarum (Cph.) 4, 514–527 (1951b).

    Google Scholar 

  • V. Inhibition of photosynthesis by cyanide. Physiol. Plantarum (Cph.) 5, 372–378 (1952a).

    Google Scholar 

  • VI. Further experiments concerning photoactivation of bicarbonate assimilation. Physiol. Plantarum (Cph.) 5, 403–408 (1952b).

    Google Scholar 

  • Rabinowitch, E. I.: Photosynthesis and related processes. Vol. II. part 2, p. 1211–2088. New York 1956.

    Google Scholar 

  • Rosenberg, J. L.: Use of a glass electrode for measuring rapid changes in photosynthetic rates. J. gen. Physiol. 37, 753–774 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Roughton, F. J. W.: Carbonic anhydrase. Ergebn. Enzymforsch. 3, 289–302 (1934).

    CAS  Google Scholar 

  • Ruttner, F.: Das elektrolytische Leitvermögen verdünnter Lösungen unter dem Einfluß submerser Gewächse. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 130, 71–108 (1921).

    Google Scholar 

  • Zur Frage der Karbonat-Assimilation der Wasserpflanzen. Eine vergleichende Untersuchung. I. Teil: Die beiden Haupttypen der Kohlenstoffaufnahme. Öst. bot. Z. 94, 265–294 (1947).

    Google Scholar 

  • II. Teil: Das Verhalten von Elodea canadensis und Fontinalis antipyretica in Lösungen von Natrium- bzw. Kalium-bikarbonat. Öst. bot. Z. 95, 208–238 (1948).

    Google Scholar 

  • Schutow, D. A.: Die Assimilation der Wasserpflanzen und die aktuelle Reaktion des Milieus. Planta (Berl.) 2, 132–151 (1926).

    Article  Google Scholar 

  • Smith, E. L.: The influence of light and carbon dioxide on photosynthesis. J. gen. Physiol. 20, 807–830 (1937).

    Article  PubMed  CAS  Google Scholar 

  • Limiting factors in photosynthesis: light and carbon dioxide. J. gen. Physiol. 22, 21–35 (1938).

    Google Scholar 

  • Steemann Nielsen, E.: Dependence of freshwater plants on quantity of carbon dioxide and hydrogen ion concentration, illustrated through experimental investigations. Dansk bot. Ark. 11, Nr 8, 1–25 (1944).

    Google Scholar 

  • Carbon sources in the photosynthesis of aquatic plants. Nature (Lond.) 158, 594–596 (1946).

    Google Scholar 

  • Photosynthesis of aquatic plants with special reference to the carbon-sources. Dansk bot. Ark. 12, Nr 8, 1–71 (1947).

    Google Scholar 

  • Passive and active ion transport during photosynthesis in water plants. Physiol. Plantarum (Cph.) 4, 189–198 (1951).

    Google Scholar 

  • Experimental carbon dioxide curves in photosynthesis. Physiol. Plantarum (Cph.) 5, 145–159 (1952).

    Google Scholar 

  • The persistence of aquatic plants to extreme Ph values. Physiol. Plantarum (Cph.) 5, 211–217 (1952b).

    Google Scholar 

  • Carbon dioxide concentration, respiration during photosynthesis, and maximum quantum yield of photosynthesis. Physiol. Plantarum (Cph.) 6, 316–332 (1953).

    Google Scholar 

  • Influence of Ph on the respiration in Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 8, 106–115 (1955).

    Google Scholar 

  • Carbon dioxide as carbon source and narcotic in photosynthesis and growth of Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 8, 317–335 (1955b).

    Google Scholar 

  • Steemann Nielsen, E., and J. Kristiansen: Carbonic anhydrase in submersed autotrophic plants. Physiol. Plantarum (Cph.) 2, 325–331 (1949).

    Article  Google Scholar 

  • Tolbert, N. E., and L. P. Zill: Excretion of glycolic acid by algae during photosynthesis. J. biol. Chem. 222, 895–906 (1956).

    PubMed  CAS  Google Scholar 

  • Tseng, C. K., and B. M. Sweeney: Physiological studies of Gelidium cartilagineum. I. Photosynthesis, with special reference to the carbon dioxide factor. Amer. J. Bot. 33, 706–715 (1946).

    Article  CAS  Google Scholar 

  • Verduin, j.: Carbon dioxide compensation point in photosynthesis. Science 120, 75–76 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem. Z. 100, 230–270 (1919).

    CAS  Google Scholar 

  • Energetik der Photosynthese. Naturwissenschaften 39, 337–341 (1952).

    Google Scholar 

  • Waygood, E. R., and K. A. Clendenning: Carbonic anhydrase in green plants. Canad. J. Res., C 28, 673–689 (1950).

    Article  Google Scholar 

  • Whittingham, C. P.: Rate of photosynthesis and concentration of carbon dioxide in Chlorella. Nature (Lond.) 170, 1017–1018 (1952).

    Article  CAS  Google Scholar 

  • Wilmott, A. J.: Experimental researches on vegetable assimilation and respiration. XIV. Assimilation by submerged plants in dilute solutions of bicarbonates and of acids: an improved bubble-counting technique. Proc. Roy. Soc. B 92, 304–327 (1921).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nielsen, E.S. (1960). Uptake of CO2 by the plant. In: Pirson, A. (eds) Die CO2-Assimilation / The Assimilation of Carbon Dioxide. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94798-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94798-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94799-5

  • Online ISBN: 978-3-642-94798-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics