Advertisement

Photosynthesis in algae containing special pigments

  • F. T. Haxo
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Abstract

In all algae chlorophyll is accompanied by supplementary pigments which may absorb an appreciable portion of the incident light. Brown, red and blue-green algae provide striking examples of this; so do some of the more rarely observed microscopic algae such as the cryptomonads. For the physiologist the presence of masking pigments has long posed pertinent questions concerning their possible role in photosynthesis. In the present discussion the current status of this problem is considered, with emphasis given to the more definitive investigations of recent years. The reader is referred to the following reviewers for more comprehensive treatments of individual aspects than is possible here: Rabinowitch (1945, 1951, 1952, 1956), Blinks (1954, 1955), Pirson (1955), Gessner (1955), French and Young (1956), Duysens (1956) and, most recently, Emerson (1958). Chemical and physical properties of the chlorophylls, carotenoids and phycobilins (biliproteins) are detailed in other chapters of this Volume.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Airth, R. L., and L. R. Blinks: A new phycoerythrin from Porphyra naiadum, Biol. Bull. 111, 321–327 (1956).CrossRefGoogle Scholar
  2. Allen, M. B., E. C. Dougherty and J. A. Mc Laughlin: Chromoprotein pigments of some cryptomonad flagellates. Nature (Lond.) 184, 1047–1049 (1959).CrossRefGoogle Scholar
  3. Arnold, W., and Jane Thompson: Delayed light production by blue-green algae, red algae, and purple bacteria. J. gen. Physiol. 39, 311–318 (1956).PubMedCrossRefGoogle Scholar
  4. Baatz, I.: Die Bedeutung der Lichtqualität für Wachstum und Stoffproduktion planktonischer Meeres-Diatomeen. Planta (Berl.) 31, 726–766 (1941).CrossRefGoogle Scholar
  5. Blinks, L. R.: [1] The role of accessory pigments in photosynthesis. In B. A. Fry and J. L. Peel, Autotrophic microorganisms, p. 224–246. Cambridge: Cambridge University Press 1954.Google Scholar
  6. [2] The photosynthetic function of pigments other than chlorophyll. Ann. Rev. Plant Physiol. 5, 93–114 (1954).Google Scholar
  7. [3] Photosynthesis and productivity of littoral marine algae. J. Marine Res. 14, 363–373 (1955).Google Scholar
  8. [4] Chromatic transients in photosynthesis of red algae. In H. Gaffron et al. Research in Photosynthesis, p. 444–449. New York: Interscience Publishers, Inc. 1957.Google Scholar
  9. [5] Chromatic transients in the photosynthesis of a green alga. Plant Physiol. 34, 200–203 (1959).Google Scholar
  10. Boresch, K.: Algenfarbstoffe. In G. Klein, Handbuch der Pflanzenanalyse, Vol. III, p. 1382–1490. Vienna: Springer 1932.Google Scholar
  11. Brody, M.: The participation of chlorophyll and phycobilins in the photosynthesis of red algae. Doctoral Thesis, University of Illinois 1958.Google Scholar
  12. Brody, M., and R. Emerson: The effect of wave length and intensity of light on the proportion of pigments in Porphyridium cruentum. Amer. J. Bot. 46, 433–440 (1959).CrossRefGoogle Scholar
  13. Brody, S. B., and M. Brody: Induced changes in the efficiency of energy transfer in Porphyridium cruentum. I. Arch. Biochem. 82, 161–178 (1959).PubMedCrossRefGoogle Scholar
  14. Claes, H.: Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe von Chlorella-Mutanten. Z. Naturforsch. 9b, 461–469 (1954).Google Scholar
  15. Dutton, H. J., and W. M. Manning: Evidence for carotenoid-sensitized photosynthesis in the diatom Nitzschia closterium. Amer. J. Bot. 28, 516–526 (1941).CrossRefGoogle Scholar
  16. Dutton, H. J., W. M. Manning and B. M. Duggar: Chlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J. phys. Chem. 47, 308–313 (1943).CrossRefGoogle Scholar
  17. Duysens, L. N. M.: [1] Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature (Lond.) 168, 548–550 (1951).CrossRefGoogle Scholar
  18. [2] Transfer of excitation energy in photosynthesis. Doctoral Thesis, University of Utrecht 1952.Google Scholar
  19. [3] The flattening of the absorption spectrum of suspensions as compared to that of solutions. Biochim. biophys. Acta 19, 1–12 (1956).Google Scholar
  20. [4] Energy transformations in photosynthesis. Ann. Rev. Plant Physiol. 7, 25–50 (1956).Google Scholar
  21. [5] The path of light energy in photosynthesis. In The Photochemical Apparatus. Its Structure and Function. Brookhaven Symp. Biol. 11, 10–25 (1959).Google Scholar
  22. Ehrke, G.: Über die Assimilation komplementär gefärbter Meeresalgen im Lichte von verschiedenen Wellenlängen. Planta (Berl.) 17, 650–665 (1932).CrossRefGoogle Scholar
  23. Emerson, R.: [1] The quantum yield of photosynthesis. Ann. Rev. Plant Physiol. 9, 1–24 (1958).CrossRefGoogle Scholar
  24. [2] Yield of photosynthesis from simultaneous illumination with pairs of wavelengths. Science 127, 1059–1060 (1958).Google Scholar
  25. Emerson, R., and R. Chalmers: Speculations concerning the function and phylogenetic significance of accessory pigments of algae. Phycol. Soc. Amer. News Bull. 11, 51–56 (1958).Google Scholar
  26. Emerson, R., R. Chalmers and C. Cederstrand: Some factors influencing the long-wave limit of photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 133–143 (1957).CrossRefGoogle Scholar
  27. Emerson, R., R. Chalmers, C. Cederstrand and M. Brody: Effect of temperature on the long wave limit of photosynthesis. Science 123, 673 (1956).Google Scholar
  28. Emerson, R., and C. M. Lewis: [1] The photosynthetic efficiency of phycocyanin in Chroococcus, and the problem of carotenoid participation in photosynthesis. J. gen. Physiol. 25, 579–595 (1942).PubMedCrossRefGoogle Scholar
  29. [2] The dependence of the quantum yield of Chlorella photosynthesis on wave length of light. Amer. J. Bot. 30, 165–178 (1943).Google Scholar
  30. Engelmann, T. W.: [1] Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum. Bot. Ztg 40, 419–422 (1882).Google Scholar
  31. [2] Über Assimilation von Haematococcus. Bot. Ztg 40, 663–669 (1882).Google Scholar
  32. [3] Farbe und Assimilation. Bot. Ztg 41, 1–29 (1883).Google Scholar
  33. [4] Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot. Ztg 42, 81–105 (1884).Google Scholar
  34. Feldman, J., et R. Tixier: Sur la floridorubine, pigment rouge des plastes d’une Rhodophycee (Rytiphlea tinctoria Clem. C. Ag.). Rev. gén. Bot. 54, 341–354 (1947).Google Scholar
  35. Franck, J.: Remarks on the long-wave-length limits of photosynthesis and chlorophyll fluorescence. Proc. nat. Acad. Sci. (Wash.) 44, 941–948 (1958).CrossRefGoogle Scholar
  36. French, C. S., and V. K. Young: [1] The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J. gen. Physiol. 35, 873–890 (1952).PubMedCrossRefGoogle Scholar
  37. [2] The absorption, action, and fluorescence spectra of photosynthetic pigments in living cells and in solutions. In A. Hollaender, Radiation Biology, Vol. III, p. 343–391. New York: McGraw Hill 1956.Google Scholar
  38. Gessner, F.: Hydrobotanik. I. Energiehaushalt. Berlin: VEB Deutscher Verlag Wissenschaften 1955.Google Scholar
  39. Goodwin, T. W., and M. Jamikorn: Studies in carotenogenesis. 11. Carotenoid synthesis in the alga Haematococcus pluvialis. Biochem. J. 57, 376–381 (1954).PubMedGoogle Scholar
  40. Griffiths, M., W. R. Sistrom, G. Cohen-Bazire and R. Y. Stanier: Function of carotenoids in photosynthesis. Nature (Lond.) 176, 1211–1214 (1955).CrossRefGoogle Scholar
  41. Haxo, F. T.: The function of pigments other than chloropyhll in the photosynthesis of several flagellates. Proc. Intern. Botan. Congr. 9th Congr. Montreal 1959, pp. 154–155.Google Scholar
  42. Haxo, F. T., and L. R. Blinks: Photosynthetic action spectra of marine algae. J. gen. Physiol. 33, 389–422 (1950).PubMedCrossRefGoogle Scholar
  43. Haxo, F. T., and D. C. Fork: Photosynthetically active accessory pigments of cryptomonads. Nature (Lond.) 184, 1051–1052 (1959).CrossRefGoogle Scholar
  44. Haxo, F. T., and P. S. Norris: Photosynthetic activity of phycobilins in some red and blue-green algae. Biol. Bull. 105, 374 (1953).CrossRefGoogle Scholar
  45. Haxo, F. T., C. Óh Eocha and P. Norris: Comparative studies of chromatographically separated phycoerythrins and phycocyanins. Arch. Biochem. 54, 162–173 (1955).PubMedCrossRefGoogle Scholar
  46. Klugh, A. B.: Studies on the photosynthesis of marine algae. Contr. Canad. Biol. and Fisheries 6, 43–63 (1930).Google Scholar
  47. Kok, B.: [1] Light induced absorption changes in photosynthetic organisms. Acta bot. neerl. 6, 529–577 (1957).Google Scholar
  48. [2] Light induced absorption changes. II. A split beam-difference spectrophotometer. Plant Physiol. 34, 184–192 (1959).Google Scholar
  49. Latimer, P., T. T. Bannister and E. Rabinowitch: Quantum yields of fluorescence of plant pigments. Science 124, 585–586 (1956).PubMedCrossRefGoogle Scholar
  50. Levring, T.: Submarine daylight and the photosynthesis of marine algae. Göteborgs Kgl. Vetenskaps-Vitterhets-Samhäll. Handl. 5, 1–89 (1947).Google Scholar
  51. Menke, W.: Über den Zustand der Carotinoide in den Piastiden. Naturwiss. 28, 31 (1940).CrossRefGoogle Scholar
  52. Montfort, C.: [1] Farbe und Stoffgewinn im Meer. Jb. wiss. Bot. 79, 493–592 (1934).Google Scholar
  53. [2] Carotinoide, Photosynthese und Quantentheorie. Jb. wiss. Bot. 83, 725–772 (1936).Google Scholar
  54. [3] Die Photosynthese brauner Zellen im Zusammenwirken von Chlorophyll und Carotinoiden. Hoppe-Seyler’s Z. physiol. Chem. 186, 57–93 (1940).Google Scholar
  55. [4] Die Ausnutzung grünen Lichtes bei braunen Zellen im Hinblick auf den Energiegewinn durch den Fucoxanthineiweißkomplex. Planta (Berl.) 32, 118–120 (1941).Google Scholar
  56. Óh Eocha, C.: The comparative biochemistry of phycoerythrins and phycocyanins. Doctoral Thesis, University of California 1955.Google Scholar
  57. Óh Eocha, C., and M. Raftery: Phycoerythrins and phycocyanins of cryptomonads. Nature (Lond.) 184, 1049–1051 (1959).CrossRefGoogle Scholar
  58. Pirson, A.: Stoffwechsel organischer Verbindungen. I. (Photosynthese.) Fortsch. Bot. 17, 529–577 (1955).Google Scholar
  59. Rabinowitch, E. I.: [1] Photosynthesis and related processes. I. New York: Inter-science 1945.CrossRefGoogle Scholar
  60. [2] Photosynthesis and related processes. II. Part 1. New York: Inter-science 1951.Google Scholar
  61. [3] Photosynthesis. Ann. Rev. Plant Physiol. 3, 229–264 (1952).Google Scholar
  62. [4] Photosynthesis and related processes. II. Part 2. New York: Interscience 1956.Google Scholar
  63. Sagromsky, H.: Die Bedeutung des Lichtfaktors für den Gaswechsel planktonischer Diatomeen und Chlorophyceen. Planta (Berl.) 33, 299–339 (1943).CrossRefGoogle Scholar
  64. Schmidt, G.: Die Wirkung der Lichtqualität auf den Assimilationsapparat verschieden gefärbter Gewebe. Jb. wiss. Bot. 85, 554–592 (1937).Google Scholar
  65. Shibata, K.: Simple absolute method for measuring diffuse reflectance spectra. J. opt. Soc. Amer. 47, 172–175 (1957).CrossRefGoogle Scholar
  66. Shibata, K., A. A. Benson and M. Calvin: The absorption spectra of suspensions of living micro-organisms. Biochim. biophys. Acta 15, 461–470 (1954).PubMedCrossRefGoogle Scholar
  67. Smith, J. H. C.: The relationship of plant pigments to photosynthesis. J. Chem. Ed. 26, 631–638 (1949).CrossRefGoogle Scholar
  68. Strain, H. H.: The pigments of algae. In G. M. Smith, Manual of phycology, p. 243–262. Waltham, Mass.: Chronica Botanica 1951.Google Scholar
  69. Tanada, T.: The photosynthetic efficiency of carotenoid pigments in Navicula minima. Amer. J. Bot. 38, 276–283 (1951).CrossRefGoogle Scholar
  70. Tischer, J.: Über die Identität von Euglenarhodon mit Astacin. Hoppe-Seyler’s Z. physiol. Chem. 267, 281–284 (1941).CrossRefGoogle Scholar
  71. Warburg, O., G. Krippahl u. W. Schröder: Wirkungsspektrum eines Photosynthese-Ferments. Z. Naturforsch. 10b, 631–639 (1955).Google Scholar
  72. Wassink, E. C.: Some remarks on chromophyllins and on the paths of energy-transfer in photosynthesis. Enzymologia 12, 362–372 (1948).Google Scholar
  73. Wassink, E. C., et J. A. H. Kersten: [1] Observations sur la photosynthèse et la fluorescence chlorophyllienne du diatomées. Enzymologia 11, 282–312 (1944).Google Scholar
  74. [2] Observations sur le spectre d’absorption et sur le rôle des carotenoids dans la photosynthèse des diatomées. Enzymologia 12, 3–32 (1946).Google Scholar
  75. Wurmser, R.: Recherches sur l’assimilation chlorophyllienne. Paris: Vigot 1921.Google Scholar
  76. Yocum, C. S.: Some experiments on photosynthesis in marine algae. Doctoral Thesis, Stanford University 1951.Google Scholar
  77. Yocum, C. S., and L. R. Blinks: Photosynthetic efficiency of marine plants. J. gen. Physiol. 38, 1–16 (1954).PubMedGoogle Scholar
  78. Light-induced efficiency and pigment alterations in red algae. J. gen. Physiol. 41, 1113–1117 (1958).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • F. T. Haxo

There are no affiliations available

Personalised recommendations