Advertisement

Die Nitratreduktion grüner Pflanzen

  • Erich Kessler
Part of the Ergebnisse der Biologie book series (ERGBIOL, volume 21)

Zusammenfassung

Das Nitrat stellt für die meisten Pflanzen die wichtigste natürliche N-Quelle dar. Da der Stickstoff jedoch in fast allen Fällen erst in reduzierter Form in organische Bindung übergeführt werden kann, muß im allgemeinen der N-Assimilation zunächst die Nitratreduktion vorausgehen, ein Vorgang, der damit im Stickstoffhaushalt der Pflanzen eine ähnlich fundamentale Rolle spielt wie die Photosynthese im Kohlenstoffhaushalt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agarwala, S. C., and E. J. Hewitt: Molybdenum as a plant nutrient. V. The interrelationships of molybdenum and nitrate supply in the concentration of sugars, nitrate and organic nitrogen in cauliflower plants grown in sand culture. J. Hort. Sci. 30, 151–162 (1955a).Google Scholar
  2. Agarwala, S. C., and E. J. Hewitt: Molybdenum as a plant nutrient. VI. Effects of molybdenum supply on the growth and composition of cauliflower plants given different sources of nitrogen supply in sand culture. J. Hort. Sci. 30, 163–180 (1955b).Google Scholar
  3. Alberts-Dietert, F.: Die Wirkung von Eisen und Mangan auf die Stickstoffassimilation von Chlorella. Planta (Berl.) 32, 88–117 (1941).CrossRefGoogle Scholar
  4. Anderson, A. J.: The role of molybdenum in plant nutrition, p. 3–49 in: “Inorganic Nitrogen Metabolism”. Baltimore 1956.Google Scholar
  5. Anderson, A. J. and D. Spencer: Molybdenum in nitrogen metabolism of legumes and nonlegumes. Aust. J. Sci. Res. B 3, 414–430 (1950).Google Scholar
  6. Andreeva, T. F.: Die Bedeutung der Photosynthese für Nitratreduktion und Eiweißsynthese im Blatt. Dokl. Akad. Nauk SSSR 78, 1033–1036 (1951).PubMedGoogle Scholar
  7. Arnon, D. I., P. S. Ichioka, G. Wessel, A. Fujiwara and J. T. Woolley: Molybdenum in relation to nitrogen metabolism. I. Assimilation of nitrate nitrogen by Scenedesmus. Physiol. Plantarum (Copenh.) 8, 538–551 (1955).CrossRefGoogle Scholar
  8. Bongers, L. H. J.: Aspects of nitrogen assimilation by cultures of green algae. Mededel. Landbouwhogeschool Wageningen 56, 1–52 (1956).Google Scholar
  9. Burström, H.: Über die Schwermetallkatalyse der Nitratassimilation. Planta (Berl.) 29, 292–305 (1939a).CrossRefGoogle Scholar
  10. 9.
    Burström, H.: Die Rolle des Mangans bei der Nitratassimilation. Planta (Berl.) 30, 129–150 (1939b).CrossRefGoogle Scholar
  11. Burström, H.: Photosynthesis and assimilation of nitrate by wheat leaves. Ann. Agric. Coll. Sweden 11, 1–50 (1943).Google Scholar
  12. Burström, H.: The nitrate nutrition of plants. Ann. Agric. Coll. Sweden 13, 1–86 (1945).Google Scholar
  13. Burström, H.: Studies on growth and metabolism of roots. II. n-Diamylacetic acid and assimilation of nitrate. Physiol. Plantarum (Copenh.) 2, 332–340 (1949).CrossRefGoogle Scholar
  14. Burström, H.: Nitrate reduction, p. 443–462 in: “Radiation Biology”, Vol. III. New York 1956.Google Scholar
  15. Candela, M. I., E. G. Fisher and E. J. Hewitt: Molybdenum as a plant nutrient. X. Some factors affecting the activity of nitrate reductase in cauliflower plants grown with different nitrogen sources and molybdenum levels in sand culture. Plant Physiol. 32, 280–288 (1957).PubMedCrossRefGoogle Scholar
  16. Cramer, M., and J. Myers: Nitrate reduction and assimilation in Chlorella. J. gen. Physiol. 32, 93–102 (1948).PubMedCrossRefGoogle Scholar
  17. Damaschke, K., u. M. Lübke: Über die Fähigkeit der Chlorella pyrenoidosa zur anaeroben Nitritreduktion. Z. Naturforsch. 13 b, 134–135 (1958).Google Scholar
  18. Davis, E. A.: Nitrate reduction by Chlorella. Plant Physiol. 28, 539–544 (1953).PubMedCrossRefGoogle Scholar
  19. Delwiche, C. C.: The assimilation of ammonium and nitrate ions by tobacco plants. J. biol. Chem. 189, 167–175 (1951).PubMedGoogle Scholar
  20. Eckerson, S. H.: Protein synthesis by plants. I. Nitrate reduction. Bot. Gaz. 77, 377–390 (1924).CrossRefGoogle Scholar
  21. Egami, F., K. Ohmachi, K. Iida and S. Taniguchi: Nitrate reducing systems in cotyledons and seedlings of bean seed embryos, Vigna sesquipedalis, during the germinating stage. Biochimija 22, 122–134 (1957).Google Scholar
  22. Evans, H.J.: Diphosphopyridine nucleotide-nitrate reductase from soybean nodules. Plant Physiol. 29, 298–301 (1954).PubMedCrossRefGoogle Scholar
  23. Evans, H.J.: Role of molybdenum in plant nutrition. Soil. Sci. 81, 199–208 u. 243–258 (1956).Google Scholar
  24. Evans, H.J. and N. S. Hall: Association of molybdenum with nitrate reductase from soybean leaves. Science 122, 922–923 (1955).PubMedCrossRefGoogle Scholar
  25. Evans, H.J. and A. Nason: The effect of reduced triphosphopyridine nucleotide on nitrate reduction by purified nitrate reductase. Arch. Biochem. Biophys. 39, 234–235 (1952).PubMedCrossRefGoogle Scholar
  26. Evans, H.J. and A. Nason: Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).PubMedCrossRefGoogle Scholar
  27. Evans, H, J., E. R. Purvis and F. E. Bear: Molybdenum nutrition of alfalfa. Plant Physiol. 25, 555–566 (1950).Google Scholar
  28. Fan, C. S., J. F. Stauffer and W. W. Umbreit: An experimental separation of oxygen liberation from carbon dioxide fixation in photosynthesis by Chlorella. J. gen. Physiol. 27, 15–28 (1943).PubMedCrossRefGoogle Scholar
  29. Folkes, B. F., A. J. Willis and E. W. Yemm: The respiration of barley plants. VII. The metabolism of nitrogen and respiration in seedlings. New Phytol. 51, 317–341 (1952).CrossRefGoogle Scholar
  30. Gaffron, H.: Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol. Rev. Cambridge Phil. Soc. 19, 1–20 (1944).CrossRefGoogle Scholar
  31. Gilbert, S. G., and J. W. Shive: The significance of oxygen in the nutrient substrate for plants. I. The oxygen requirement. Soil. Sci. 53, 143–152(1942).Google Scholar
  32. 31.
    Gilbert, S. G., and J. W. Shive: The importance of oxygen in the nutrient substrate for plants — relation of the nitrate ion to respiration. Soil. Sci. 59, 453–460 (1945).CrossRefGoogle Scholar
  33. Hab A, G. de la: Studies on the mechanism of nitrate assimilation in Neurospora. Science 112, 203–204 (1950).CrossRefGoogle Scholar
  34. Hamner, K. C.: Effects of nitrogen supply on rates of photosynthesis and respiration in plants. Bot. Gaz. 97, 744–764 (1935).CrossRefGoogle Scholar
  35. Harvey, H. W.: Synthesis of organic nitrogen and chlorophyll by Nitzschia closterium. J. Mar. Biol. Ass. U. K. 31, 477–487 (1953).CrossRefGoogle Scholar
  36. Hewitt, E. J., S. C. Agarwala and E. W. Jones: Effect of molybdenum status on the ascorbic acid content of plants in sand culture. Nature (Lond.) 166, 1119 (1950).CrossRefGoogle Scholar
  37. Hewitt, E. J. and E. W. Jones: The production of molybdenum deficiency in plants in sand culture with special reference to tomato and brassica crops. J. Pomol. hort. Sci. 23, 254–262 (1947).Google Scholar
  38. 37.
    Hewitt, E. J. and E. W. Jones and A. H. Williams: Relation of molybdenum and manganese to the free amino-acid content of the cauliflower. Nature (Lond.) 163, 681–682 (1949).CrossRefGoogle Scholar
  39. Ichioka, P. S., and D. I. Arnon: Molybdenum in relation to nitrogen metabolism. II. Assimilation of ammonia and urea without molybdenum by Scenedesmus. Physiol. Plantarum (Copenh.) 8, 552–560 (1955).CrossRefGoogle Scholar
  40. Jones, L. H., W. B. Shepardson and C. A. Peters: The function of manganese in the assimilation of nitrates. Plant Physiol. 24, 300–306 (1949).PubMedCrossRefGoogle Scholar
  41. Kessler, E.: Nitritbildung und Atmung bei der Nitratreduktion von Grünalgen. Z. Naturforsch. 7 b, 280–284 (1952).Google Scholar
  42. Kessler, E.: Über den Mechanismus der Nitratreduktion von Grünalgen. I. Nitritbildung und Nitritreduktion durch Ankistrodesmus braunii (Nägeli) Brunnthaler. Flora (Jena) 140, 1–38 (1953a).Google Scholar
  43. Kessler, E.: Über den Mechanismus der Nitratreduktion von Grünalgen. II. Vergleichendphysiologische Untersuchungen. Arch. Mikrobiol. 19, 438–457 (1953b).PubMedCrossRefGoogle Scholar
  44. Kessler, E.: Über die Wirkung von 2,4-Dinitrophenol auf Nitratreduktion und Atmung von Grünalgen. Planta (Berl.) 45, 94–105 (1955).CrossRefGoogle Scholar
  45. Kessler, E.: Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. II. Dunkel-Reduktion von Nitrat und Nitrit mit molekularem Wasserstoff. Arch. Mikrobiol. 27, 166–181 (1957a).PubMedCrossRefGoogle Scholar
  46. Kessler, E.: Untersuchungen zum Problem der photochemischen Nitratreduktion in Grünalgen. Planta (Berl.) 49, 505–523 (1957b).CrossRefGoogle Scholar
  47. Kok, B.: Photo-induced interactions in metabolism of green plant cells. Symp. Soc. exp. Biol. 5, 211–221 (1951).Google Scholar
  48. Korkes, S.: Enzymatic reduction of pyridine nucleotides by molecular hydrogen. J. biol. Chem. 216, 737–748 (1955).PubMedGoogle Scholar
  49. Krasna, A. I., and D. Rittenberg: Reduction of nitrate with molecular hydrogen by Proteus vulgaris. J. Bact. 68, 53–56 (1954).PubMedGoogle Scholar
  50. Kumada, H.: The nitrate utilization in seed embryos of Vigna sesquipedalis. J. Biochem. (Tokyo) 40, 439–450 (1953).Google Scholar
  51. Kylin, A.: The nitrogen sources and the influence of manganese on the nitrogen assimilation of Ulva lactuca. Förh. Kgl. Fysiogr. Sällsk. Lund 15, 27–35(1945).Google Scholar
  52. Lascelles, J., and J. L. Still: The reduction of nitrate, nitrite and hydroxyl-amine by E. coli. Aust. J. exp. Biol. med. Sci. 24, 159–167 (1946).PubMedCrossRefGoogle Scholar
  53. Lease, E. J., and W. E. Tottingham: Photochemical responses of the wheat plant to spectral regions. J. Amer. chem. Soc. 57, 2613–2616 (1935).CrossRefGoogle Scholar
  54. Mackler, B., H. R. Mahler and D. E. Green: Studies on metalloflavoproteins. I. Xanthine oxidase, a molybdoflavoprotein. J. biol. Chem. 210, 149–164 (1954).Google Scholar
  55. Mahler, H. R., B. Mackler, D. E. Green and R. M. Bock: Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. J. biol. Chem. 210, 465–480 (1954).PubMedGoogle Scholar
  56. Mayer, A. M.: Iron, manganese and the reduction of nitrates by Chlorella vulgaris. Palest. J. Bot., Jerusalem Ser. 5, 161–179 (1952).Google Scholar
  57. McElroy, W. D., and D. Spencer: Normal pathways of assimilation of nitrate and nitrite, p. 137–152 in: “Inorganic Nitrogen Metabolism”. Baltimore 1956.Google Scholar
  58. McKee, H. S.: Review of recent work on nitrogen metabolism. New Phytol. 48, 1–83 (1949).CrossRefGoogle Scholar
  59. McNall, E. G., and D. E. Atkinson: Nitrate reduction. II. Utilization of possible intermediates as nitrogen sources and as electron acceptors. J. Bact. 74, 60–66 (1957).PubMedGoogle Scholar
  60. Medina, A., and D. J. D. Nicholas: Hyponitrite reductase in Neurospora. Nature (Lond.) 179, 533–534 (1957a).CrossRefGoogle Scholar
  61. 60.
    Medina, A., and D. J. D. Nicholas: Metallo-enzymes in the reduction of nitrite to ammonia in Neurospora. Biochim. biophys. Acta 25, 138–141 (1957b).Google Scholar
  62. Mendel, J. L., and D. W. Visser: Studies on nitrate reduction in higher plants. I. Arch. Biochem. Biophys. 32, 158–169 (1951).CrossRefGoogle Scholar
  63. Mevius, W.: Nitrite. Handbuch der Pflanzenphysiologie, Bd. 8, 166–178, 1958.Google Scholar
  64. Mulder, E. G.: Importance of molybdenum in the nitrogen metabolism of microorganisms and higher plants. Plant a. Soil 1, 94–119 (1948).CrossRefGoogle Scholar
  65. Myers, J.: The pattern of photosynthesis in Chlorella. p. 349–364 in: “Photosynthesis in Plants”. Ames, Iowa 1949.Google Scholar
  66. Myers, J. and M. Cramer: Metabolic conditions in Chlorella. J. gen. Physiol. 32, 103–110 (1948).PubMedCrossRefGoogle Scholar
  67. Nance, J. F.: The role of oxygen in nitrate assimilation by wheat roots. Amer. J. Bot. 35, 602–606 (1948).CrossRefGoogle Scholar
  68. Nance, J. F.: Inhibition of nitrate assimilation in excised wheat roots by various respiratory poisons. Plant Physiol. 25, 722–735 (1950).PubMedCrossRefGoogle Scholar
  69. Nance, J. F. and L. W. Cunningham: Evolution of acetaldehyde by excised wheat roots in solutions of nitrate and nitrite salts. Amer. J. Bot. 38, 604–609 (1951).CrossRefGoogle Scholar
  70. Nason, A.: Enzymatic steps in the assimilation of nitrate and nitrite in fungi and green plants, p. 109–136 in: “Inorganic Nitrogen Metabolism”. Baltimore 1956.Google Scholar
  71. Nason, A., R. G. Abraham and B. C. Averbach: The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochim. biophys. Acta 15, 160–161 (1954).Google Scholar
  72. Nason, A. and H. J. Evans: Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J. biol. Chem. 202, 655–673 (1953).PubMedGoogle Scholar
  73. Nicholas, D. J. D.: Role of metals in enzymes with special reference to flavoproteins. Nature (Lond.) 179, 800–804 (1957a).CrossRefGoogle Scholar
  74. Nicholas, D. J. D.: The function of trace metals in the nitrogen metabolism of plants. Ann. Bot. 21, 587–598 (1957b).Google Scholar
  75. Nicholas, D. J. D. and A. Nason: Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. J. biol. Chem. 207, 353–360 (1954a).PubMedGoogle Scholar
  76. Nicholas, D. J. D. and A. Nason: Mechanism of action of nitrate reductase from Neurospora. J. biol. Chem. 211, 183–197 (1954b).PubMedGoogle Scholar
  77. Nicholas, D. J. D. and A. Nason: Role of molybdenum as a constituent of nitrate reductase from soybean leaves. Plant Physiol. 30, 135–138 (1955a).PubMedCrossRefGoogle Scholar
  78. Nicholas, D. J. D. and A. Nason: Diphosphopyridine nucleotide-nitrate reductase from Escherichia coli. J. Bact. 69, 580–583 (1955b).PubMedGoogle Scholar
  79. Nicholas, D. J. D., A. Nason and W. D. McElroy: Molybdenum and nitrate reductase. I. Effect of molybdenum deficiency on the Neurospora enzyme. J. biol. Chem. 207, 341–351 (1954).Google Scholar
  80. 79.
    Nicholas, D. J. D. and J. H. Scawin: A phosphate requirement for nitrate reductase from Neurospora crassa. Nature (Lond.) 178, 1474–1475 (1956).CrossRefGoogle Scholar
  81. Nicholas, D. J. D. and H. M. Stevens: Valency changes of molybdenum during the enzymatic reduction of nitrate in Neurospora. Nature (Lond.) 176, 1066–1067 (1955).CrossRefGoogle Scholar
  82. Niel, C. B. van, M. B. Allen and B. E. Wright: On the photochemical reduction of nitrate by algae. Biochim. biophys. Acta 12, 67–74 (1953).Google Scholar
  83. Nightingale, G. T.: The nitrogen nutrition of green plants. Bot. Rev. 3, 85–174 (1937).CrossRefGoogle Scholar
  84. Nightingale, G. T.: The nitrogen nutrition of green plants. II. Bot. Rev. 14, 185–221 (1948).CrossRefGoogle Scholar
  85. Noack, K., u. A. Pirson: Die Wirkung von Eisen und Mangan auf die Stickstoffassimilation von Chlorella. Ber. dtsch. bot. Ges. 57, 442–452 (1939).Google Scholar
  86. Omura, H.: On the nitrate and nitrite reductase in green algae. Enzymologia 17, 127–132 (1954).PubMedGoogle Scholar
  87. Pirson, A., u. G. Wilhelmi: Photosynthese-GaswechselundMineralsalzernährung. Z. Naturforsch. 5 b, 211–218 (1950).Google Scholar
  88. Rautanen, N.: Oxime und Hydroxylamin als Zwischenstufen der Assimilation von NO3 und NH4. Handbuch der Pflanzenphysiologie, Bd. 8, 212–223 (1958).Google Scholar
  89. Saïd, H., and E. D. H. el Shishiny: Respiration and nitrogen metabolism of whole and sliced radish roots with reference to the effect of alternation of air and nitrogen atmospheres. Plant Physiol. 22, 452–464 (1947).PubMedCrossRefGoogle Scholar
  90. Sato, R.: The cytochrome system and microbial reduction of nitrate, p. 163–175 in: “Inorganic Nitrogen Metabolism”. Baltimore 1956.Google Scholar
  91. Shive, J. W.: Balance of ions and oxygen tension in nutrient substrates for plants. Soil. Sci. 51, 445–459 (1941).CrossRefGoogle Scholar
  92. Silver, W. S.: Pyridine nucleotide-nitrate reductase from Hansenula anomala, a nitrate reducing yeast. J. Bact. 73, 241–246 (1957).PubMedGoogle Scholar
  93. Silver, W. S. and W. D. McElroy: Enzyme studies on nitrate and nitrite mutants of Neurospora. Arch. Biochem. Biophys. 51, 379–394 (1954).PubMedCrossRefGoogle Scholar
  94. Spencer, D.: The reduction and accumulation of nitrate. Handbuch der Pflanzenphysiologie, Bd. 8, 201–211 (1958).Google Scholar
  95. Spencer, D., H. Takahashi and A. Nason: Relationship of nitrite and hydroxylamine reductases to nitrate assimilation and nitrogen fixation in Azotobacter agile. J. Bact. 73, 553–562 (1957).PubMedGoogle Scholar
  96. 95.
    Spencer, D. and J. G. Wood: The role of molybdenum in nitrate reduction in higher plants. Aust. J. biol. Sci. 7, 425–434 (1954).PubMedGoogle Scholar
  97. Steinberg, R. A.: Role of molybdenum in the utilization of ammonium and nitrate nitrogen by Aspergillus niger. J. Agric. Res. 55, 891–902 (1937).Google Scholar
  98. Steinberg, R. A.: Growth of tobacco seedlings with nitrate and its reduction products. Plant Physiol. 28, 752–754 (1953).PubMedCrossRefGoogle Scholar
  99. Steinberg, R. A.: Metabolism of inorganic nitrogen by plants, p. 153–158 in: “Inorganic Nitrogen Metabolism”. Baltimore 1956.Google Scholar
  100. Stickland, L. H.: The reduction of nitrates by Bact. coli. Biochem. J. 25, 1543–1554 (1931).PubMedGoogle Scholar
  101. Stoy, V.: Action of different light qualities on simultaneous photosynthesis and nitrate assimilation in wheat leaves. Physiol. Plantarum (Copenh.) 8, 963–986 (1955).CrossRefGoogle Scholar
  102. Stoy, V.: Riboflavin-catalyzed enzymic photoreduction of nitrate. Biochim. biophys. Acta 21, 395–396 (1956).Google Scholar
  103. Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–454 (1949).Google Scholar
  104. Syrett, P. J.: Ammonia and nitrate assimilation by green algae (Chlorophyceae). p. 126–151 in: “Autotrophic Micro-organisms”. Cambridge 1954.Google Scholar
  105. Syrett, P. J.: The assimilation of ammonia and nitrate by nitrogen-starved cells of Chlorella vulgaris. I. The assimilation of small quantities of nitrogen. Physiol. Plantarum (Copenh.) 8, 924–929 (1955).CrossRefGoogle Scholar
  106. Syrett, P. J.: The assimilation of ammonia and nitrate by nitrogen-starved cells of Chlorella vulgaris. II. The assimilation of large quantities of nitrogen. Physiol. Plantarum (Copenh.) 9, 19–27 (1956a).CrossRefGoogle Scholar
  107. Syrett, P. J.: The assimilation of ammonia and nitrate by nitrogen-starved cells of Chlorella vulgaris. III. Differences of metabolism dependent on the nature of the nitrogen source. Physiol. Plantarum (Copenh.) 9, 28–37 (1956b).CrossRefGoogle Scholar
  108. Tang, P. S., and H. Y. Wu: Adaptive formation of nitrate reductase in rice seedlings. Nature (Lond.) 179, 1355–1356 (1957).CrossRefGoogle Scholar
  109. Taniguchi, S., R. Sato and F. Egami: The enzymatic mechanisms of nitrate and nitrite metabolism in bacteria, p. 87–108 in: “Inorganic Nitrogen Metabolism”. Baltimore 1956.Google Scholar
  110. Tottingham, W. E., H. L. Stephens and E. J. Lease: Influence of shorter light rays upon absorption of nitrate by the young wheat plant. Plant Physiol. 9, 127–142 (1934).PubMedCrossRefGoogle Scholar
  111. Vanecko, S., and J. E. Varner: Studies on nitrite metabolism in higher plants. Plant Physiol. 30, 388–390(1955).PubMedCrossRefGoogle Scholar
  112. Verhoeven, W.: Some remarks on nitrate and nitrite metabolism in microorganisms. p. 61–86 in: “Inorganic Nitrogen Metabolism”. Baltimore 1956.Google Scholar
  113. Verhoeven, W. and Y. Takeda: The participation of cytochrome c in nitrate reduction, p. 159–162 in: “Inorganic Nitrogen Metabolism”. Baltimore 1956.Google Scholar
  114. Virtanen, A. I.: Utilization of the nitrate ion by plants and its relation to the assimilation of the ammonium ion and molecular nitrogen. Acta agric. scand. 1, 1–19 (1950).CrossRefGoogle Scholar
  115. Virtanen, A. I. and N. Rautanen: Nitrogen assimilation, p. 1089–1130 in: “The Enzymes”, Vol. II, 2. New York 1952.Google Scholar
  116. Virtanen, A. I. u. S. Saubert-V. Hausen: Über die Bedeutung der das Redoxpotential erniedrigenden Stoffe für das Wachstum der Pflanze. Z. Pflanzenernähr., Düngung Bodenkunde 45, 11–22 (1949).Google Scholar
  117. 116.
    Virtanen, A. I. u. S. Saubert-V. Hausen: Dependence of nitrate reduction in green plants on reducing substances. Acta chem. scand. 5, 638–642 (1951).CrossRefGoogle Scholar
  118. Vishniac, W., and S. Ochoa: Fixation of carbon dioxide coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. biol. Chem. 195, 75–93 (1952).PubMedGoogle Scholar
  119. Walker, J. B.: Inorganic micronutrient requirements of Chlorella. I. Requirements for calcium (or strontium), copper, and molybdenum. Arch. Biochem. Biophys. 46, 1–11 (1953).Google Scholar
  120. Warburg, O., u. E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66–115 (1920).Google Scholar
  121. Willis, A. J., and E. W. Yemm: The respiration of barley plants. VIII. Nitrogen assimilation and the respiration of the root system. New Phytol. 54, 163–181 (1955).CrossRefGoogle Scholar
  122. Wolfe, M.: The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. I. A study of the molybdenum requirement for nitrogen fixation and for nitrate and ammonia assimilation. Ann. Bot. 18, 299–308 (1954a).Google Scholar
  123. Wolfe, M.: The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. II. A more detailed study of the action of molybdenum in nitrate assimilation. Ann. Bot. 18, 309–325 (1954b).Google Scholar
  124. Wood, J. G.: Nitrogen metabolism of higher plants. Ann. Rev. Plant Physiol. 4, 1–22 (1953).CrossRefGoogle Scholar
  125. Wood, J. G. and M. R. Hone: Studies on the nitrogen metabolism of plants. Aust. J. Sci. Res. B 1, 163–175 (1948).Google Scholar
  126. Wood, J. G. and M. R. Hone, M. E. Mattner and C. P. Symons: Studies on the nitrogen metabolism of plants. Aust. J. Sci. Res. B 1, 38–49 (1948).Google Scholar
  127. Woods, D. D.: The reduction of nitrate to ammonia by Clostridium welchii. Biochem. J. 32, 2000–2012 (1938).PubMedGoogle Scholar
  128. Yemm, E. W., and A. J. Willis: The respiration of barley plants. IX. The metabolism of roots during the assimilation of nitrogen. New Phytol. 55, 229–252 (1956).CrossRefGoogle Scholar
  129. Yoshimura, F.: Influence of the light on the consumption of nitrate and ammonia in lemnaceous plants. Bot. Mag. (Tokyo) 65, 176–185 (1952).Google Scholar
  130. Zucker, M., and A. Nason: A pyridine nucleotide-hydroxylamine reductase from Neurospora. J. biol. Chem. 213, 463–478 (1955).PubMedGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1959

Authors and Affiliations

  • Erich Kessler
    • 1
  1. 1.Botanischen InstitutUniversität Marburg a. d. LahnMarburg a. d. LahnDeutschland

Personalised recommendations