Der Stickstoff-Stoffwechsel der Pilze

  • Niels Nielsen
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Zusammenfassung

In dieser Übersicht werden hauptsächlich die Hefen und Schimmelpilze behandelt. Viele Pilze sind hinsichtlich ihres Stickstoffumsatzes anormal, dadurch daß sie Stickstoff-heterotroph sind. Diese Pilze werden an anderer Stelle behandelt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abderhalden, E., u. P. Rona: Die Zusammensetzung des „Eiweiß“ von Aspergillus niger bei verschiedener Stickstoffquelle. Z. physik. Chem. 46, 179–186 (1905).CrossRefGoogle Scholar
  2. Barton-Wright, E. C.: An analytical approach to some problems in the nitrogen relations of yeast. Wallerstein Lab. Commun. 15, 115–131 (1952).Google Scholar
  3. Bernhauer, K.: Fortschritte der mikrobiologischen Chemie in Wissenschaft und Technik. Erg. Enzymforsch. 11, 151–496 (1950).Google Scholar
  4. Bernhauer, K., A. Niethammer u. J. Rauch: Beiträge zur mikrobiologischen Eiweiß- und Fettsynthese. II. Mitt. Vergleichende Untersuchungen über die Eiweiß- und Fettbildung durch verschiedene Mycelpilze in der Submers-Kultur. Biochem. Z. 319, 94–101 (1948).Google Scholar
  5. Bernhauer, K., u. J. Rauch: Beiträge zur mikrobiologischen Eiweiß- und Fettsynthese. I. Mitt. Die grundlegenden Bedingungen für die Eiweiß- und Fettproduktion durch Mycelpilze in der Submers-Kultur. Biochem. Z. 319, 77–93 (1948a).Google Scholar
  6. Beiträge zur mikrobiologischen Eiweiß- und Fettsynthese. III. Mitt. Zur Methodik der submersen Mycelzüchtung in der „Rührkultur“ und deren Anwendung zur Erzeugung von Fettmycel. Biochem. Z. 319, 102–119 (1948b).Google Scholar
  7. Block, R. J., and D. Bolling: The ammo acids yielded by various yeasts after hydrolysis of the fat-free material. A comparative investigation. Arch. of Biochem. 7, 313–321 (1945).Google Scholar
  8. Brohult, S., W. Lindquist and E. Sandegren: High molecular substances in yeast. European Brewery Convention, Congress 1951. Amsterdam: Elsevier Publ. Co. 1951.Google Scholar
  9. Brohult, S., and E. Sandegren: Seed proteins. Proteins A 2, 487–512 (1954).Google Scholar
  10. Chiao, j. S., and W. H. Peterson: Methionine and cystine contents of yeasts. J. Rood Chem. 1, 1005–1008 (1953). Zit. nach Chem. Abstr.Google Scholar
  11. Ehrensvärd, G.: Amino acid metabolism in Torulopsis utilis. Cold Spring Harbor Symp. Quant. Biol. 13, 81–87 (1948).CrossRefGoogle Scholar
  12. Ehrlich, F.: Über eine Methode zur Spaltung razemischer Aminosäuren mittels Hefe. Biochem. Z. 1, 8–31 (1906).Google Scholar
  13. Über die Spaltung razemischer Aminosäuren mittels Hefe. Biochem. Z. 8, 438–466 (1908).Google Scholar
  14. Über asymmetrische und symmetrische Einwirkung von Hefe auf Razemverbindungen natürlich vorkommender Aminosäuren. Biochem. Z. 63, 379–401 (1914).Google Scholar
  15. Über symmetrische und asymmetrische Spaltung von razemischem Tyrosin durch Hefegärung und über ihre Beeinflußbarkeit durch vitaminartig wirkende Nährsubstrate. Biochem. Z. 182, 245–263 (1927).Google Scholar
  16. Enebo, L., L. G. Anderson and H. Lundin: Microbiological fat synthesis by means of Rhodotorula yeast. Arch. of Biochem. 11, 383–395 (1946).Google Scholar
  17. Foster, J. W.: Chemical activities of fungi. New York: Academic Press 1949.Google Scholar
  18. Fry, B. A.: The nitrogen metabolism of micro-organisms. London: Methuen & Co. 1955.Google Scholar
  19. Gad, A. M., and T. K. Walker: Mycological formation of fat. I. Media coducive to formation of fat from sucrose by Aspergillus nidulans, Penicillium javanicum, and P. spinulosum. J. Sci. Food Agricult. 5, 339–343 (1954).CrossRefGoogle Scholar
  20. Haehn, H.: Biochemie der Gärungen. Berlin: W. de Gruyter & Co. 1952.Google Scholar
  21. HarteLius, v.: Vergleichende Untersuchungen über den Wert der Aminosäuren als Stickstoffquelle für Hefe. C. r. Trav. Labor. Carlsberg, Sér. physiol. 22, 303–322 (1939).Google Scholar
  22. Levy, L., and M. J. Coon: The role of formate in the biosynthesis of histidine. J. of Biol. Chem. 192, 807–815 (1951).Google Scholar
  23. Ley, J. de: Nitrogen-deficient microorganisms: A new technique in microbiological chemistry. Ann. Acad. Sci. fenn., Sér. A, II Chem. 60, 37–48 (1955).Google Scholar
  24. LiNDAN, O., and E. Work: The amino-acid composition of two yeasts used to produce massive dietetic liver necrosis in rats. Biochemic. J. 48, 337–344 (1951).Google Scholar
  25. Lindquist, W.: Molecular compounds from brewers yeast. I. Proteins. Biochim. et Biophysica Acta 10, 443–452 (1953).CrossRefGoogle Scholar
  26. High molecular compounds from yeast. III. Top yeast. A comparative study. Biochim. et Biophysica Acta 11, 90–94 (1953).Google Scholar
  27. Lugg, J. W. H., and H. LuGG: Plant proteins. Adv. Protein Chem. 5, 229–304 (1949).Google Scholar
  28. Mackenzie, R. M., and R. P. Cook: The nitrogen metabolism of Penicillium notatum. Biochemic. J. 50, III (1952).Google Scholar
  29. Mansford, K., and R. Raper: Amino-acid contents of plants. Nature (Lond.) 174, 314–315 (1954).CrossRefGoogle Scholar
  30. Miettinen, J. K.: On nitrogen assimilation and synthesis of proteins and nucleotides in low-nitrogen yeast. Ann. Acad. Sci. fenn., Sér. A, II Chem. 58, 1–113 (1954).Google Scholar
  31. Nielsen, N.: Investigations on the effect of age upon the nitrogen content of yeast. C. r. Trav. Labor. Carlsberg, Ser. physiol. 19, Nr 16 (1933).Google Scholar
  32. Untersuchungen über das Vermögen der Hefe, Aminosäuren zu assimilieren. C. r. Trav. Labor. Carlsberg, Sér. physiol. 21, 395–425 (1936).Google Scholar
  33. Ergänzende Untersuchungen über die Assimilation von Aminosäuren durch Hefe. C. r. Trav. Labor. Carlsberg, Sér. chim. 22, 384–390 (1938).Google Scholar
  34. Die Stickstoffassimilation der Hefe. Erg. Biol. 19, 375–408 (1943).Google Scholar
  35. Nielsen, N., u. H. Lundin: The amount of some amino acids in protein-rich and protein-poor Rhodotorula gracilis. Ann. Acad. Sci. fenn., Sér. A, II Chem. 60, 455–459 (1955).Google Scholar
  36. Nielsen, N., u. N. G. Nilsson: Investigations on the phosphorus metabolism in Rhodotorula gracilis. II. The influence of the phosphate content of the nutrient solution on the formation of fat. Acta chem. scand. (Copenh.) 7, 984–986 (1953).CrossRefGoogle Scholar
  37. Nielsen, N., u. P. Rojowski: On the sulphur metabolism of Rhodotorula gracilis. I. The importance of sulphur and iron for the formation of protein and fat. Acta chem. scand. (Copenh.) 4, 1309–1310 (1950).CrossRefGoogle Scholar
  38. Nielsen, N., E. Sandegren and L. Ljungdahl: Amino-acids in Rhodotorula gracihs. Nature (Lond.) 164, 1055–1056 (1949).CrossRefGoogle Scholar
  39. Nilsson, N. G., u. N. Nielsen: Investigations on the phosphorus metabolism in Rhodotorula gracilis. II. Phosphate and phosphatide amounts in protein yeast and fat yeast. Acta chem. scand. (Copenh.) 7, 1067–1070 (1953).CrossRefGoogle Scholar
  40. Pirschle, K.: Biologische Beobachtungen über Hefewachstum mit besonderer Berücksichtigung von Nitraten als Stickstoffquelle. Biochem. Z. 218, 412–444 (1930).Google Scholar
  41. Porter, J. R.: Bacterial Chemistry and Physiology. New York: John Wiley & Sons. 1947.Google Scholar
  42. Pringsheim, H.: Der Einfluß der chemischen Konstitution der Stickstoffnahrung auf die Gärfähigkeit und die Wachstumsenergie verschiedener Püze. Biochem. Z. 8, 119–127 (1908).Google Scholar
  43. Pruess, L. M., E. C. Eichinger u. W. H. Peterson: The chemistry of mold tissue. III. Composition of certain molds with special reference to the lipid content. Zbl. Bakter. II 89, 370–377 (1934).Google Scholar
  44. Pyle, A. J. H.: Some aspects of the amino acid metabolism of Penicillium chrysogenum. J. Gen. Microbiol. 11, 191–194 (1954).CrossRefGoogle Scholar
  45. Rao, P. L. N., and R. Venkataraman: Nitrogen metabolism of Penicilhum chrysogenum-Q 176. Experientia (Basel) 8, 350–353 (1952).CrossRefGoogle Scholar
  46. Roine, P.: On the formation of primary amino acids in the protein synthesis in yeast. Ann. Acad. Sci. fenn., Sér. A, II Chem. 26, 1–83 (1947).Google Scholar
  47. Sandegren, E., D. Ekström u. N. Nielsen: On the sulphur metabolism of Rhodotorula gracilis. II. The ration between SH and SS groups. Acta chem. scand. (Copenh.) 4, 1311–1313 (1950).CrossRefGoogle Scholar
  48. Sheffner, A. L., and J. Grabow: Amide synthesis and transamidation during growth of Saccharomyces cerevisiae. J. Bacter. 66, 192–196 (1953).Google Scholar
  49. Skinner, C. E.: The synthesis of aromatic amino acids from inorganic nitrogen by molds and the value of mold proteins in diets. J. Bacter. 28, 95–106 (1934).Google Scholar
  50. Smithies, W. R.: Chemical composition of a sample of mycelium of Penicillium griseofulvum Dierckx. Biochemic. J. 5, 259–263 (1952).Google Scholar
  51. Somogyi, J. C.: Die ernährungsphysiologische Bedeutung der Hefe. Z. Vitaminforsch. 1944, Beih. Nr 4.Google Scholar
  52. Sperber, E.: Studies in the metabolism of growing Torulopsis utilis under aerobic conditions. Ark. Kem., Mineral. Geol., Ser. A 21, 1–136 (1946).Google Scholar
  53. Spoerl, E., and R. Carleton: Cell division. Nitrogen compound changes in yeast accompanying an inhibition of cell division. J. of Biol. Chem. 210, 521–529 (1954).Google Scholar
  54. Steinbeeg, R. A.: Effect of trace elements on growth of Aspergillus niger with amino acids. J. Agricult. Res. 64, 455–475 (1942).Google Scholar
  55. Stewabd, F. C., and J. F. Thompson: Proteins and protein metabolism in plants. Proteins A 2, 513–594 (1954).Google Scholar
  56. Stokes, J. L., and M. Gunness: The amino acid composition of microorganisms. J. Bacter. 52, 195–207 (1946).Google Scholar
  57. Suni, M.: Über die chemischen Bestandteile der Sporen von Aspergillus oryzae. Biochem. Z. 195, 161–174 (1928).Google Scholar
  58. Thatcher, F. S.: Foods and feeds from fungi. Annual Rev. Microbiol. 8, 449–472 (1954).CrossRefGoogle Scholar
  59. Thorne, R. S. W.: Mechanism of nitrogen assimilation from amino acids by yeast. Nature (Lond.) 164, 569–570 (1949).CrossRefGoogle Scholar
  60. Mechanisms of nitrogen assimilation by yeast and their relation to the problem of yeast growth in wort. Wallerstein Lab. Commun. 13, Nr 43, 319–340 (1950).Google Scholar
  61. Fermentation velocity of yeasts. II. A study of the fermentation velocities of a series of bottom and top fermentation brewery yeasts. J. Inst. Brew. 60, 238–248 (1954).Google Scholar
  62. A study of the fermentation velocities of some bottom and top fermentation brewery yeasts in relation to their nitrogen contents. Wallerstein Lab. Commun. 18, 195–212 (1954b).Google Scholar
  63. Virtanen, A.L.: Die Enzyme in lebenden Zellen. Suomen Kemist. 15 22 (1942)Google Scholar
  64. On nitrogen assimilation and protein synthesis. Ann. Acad. Sci. fenn., Sér. A, II Chem. 39, 1–25 (1950).Google Scholar
  65. Virtanen, A. I., and J. K. Miettinen: Different nitrogen fractions in normal and low-nitrogen cells of microorganisms. Acta chem. scand. (Copenh.) 3, 1437 bis 1439 (1949).CrossRefGoogle Scholar
  66. Waksman, S. A., and S. Lomanitz: Contributions to the chemistry of decomposition of protein and amino acids by various groups of microorganisms. J. Agricult. Res. 30, 263–281 (1925).Google Scholar
  67. Wiley, A. J.: Food and feed yeast. Ind. Ferment. 1, 307–343 (1954).Google Scholar
  68. Wiley, A. J., G. A. Dubey, B. F. Lueck and L. P. Hughes: Torula yeast grown on spent sulfite liquor. Industr. Engin. Chem. 42, 1830–1833 (1950).CrossRefGoogle Scholar
  69. Wolf, F. T.: The amino acid metabolism of Penicillium chrysogenum Q-176. Arch. of Biochem. 16, 143–149 (1948).Google Scholar
  70. Woodbine, M., M. E. Gregory and T. K. Walker: Microbiological synthesis of fat. Preliminary survey of the fat-producing moulds. J. of Exper. Bot. 1951, 204–211.Google Scholar
  71. Woolley, D. W., and W. H. Peterson: The chemistry of mold tissue. XI. Isolation of leucine and isoleucine from Aspergillus sydowi. J. of Biol. Chem. 114, 85–90 (1936).Google Scholar
  72. The chemistry of mold tissue. XII. Isolation of arginine, histidine, and lysine from Aspergillus sydowi. J. of Biol. Chem. 118, 363–370 (1937).Google Scholar
  73. Yokoyama Y. Amino acids in the mycelium of Penicillium chrysogenum Q-176. J. Antibiotics (Japan), 4, 95–102. (1951)Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Niels Nielsen

There are no affiliations available

Personalised recommendations