Skip to main content

Biochemical mechanisms in the synthesis and breakdown of proteins

  • Chapter
Der Stickstoffumsatz / Nitrogen Metabolism
  • 302 Accesses

Abstract

The cellular mechanisms underlying the synthesis and breakdown of highly specific protein structures are of basic interest in many branches of biological study. But, despite the varied attacks which have been made on the problems of protein metabolism, many of the biochemical mechanisms, and especially those concerned in protein synthesis, remain uncertain or obscure. With particular regard to the metabolism of higher plants, valuable reviews have been given by Petrie (1943), McKee (1949), Street (1949), Wood (1953), Steward and Thompson (1954) and Webster (1955).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Alcock, R. S.: The synthesis of proteins in vivo. Physiologic. Rev. 16, 1–18 (1936).

    CAS  Google Scholar 

  • Balls, A. K., and H. Lineweaver: Isolation and properties of crystalline papain. J. of Biol. Chem. 130, 669–686 (1939).

    CAS  Google Scholar 

  • Berger, J., and M. J. Johnson: The leucylpeptidase of malt, cabbage, and spinach. J. of Biol. Chem. 130, 655–667 (1939).

    CAS  Google Scholar 

  • Occurence of leucylpeptidase in yeast and fungi. J. of Biol. Chem. 133, 157–172 (1940).

    Google Scholar 

  • Bergmann, M.: A classification of proteolytic enzymes. Adv. Enzymol. 2, 49–68 (1942).

    CAS  Google Scholar 

  • Bergmann, M., and H. Fraenkel-Conrat: The rôle of specificity in the enzymatic synthesis of proteins. J. of Biol. Chem. 119, 707–720 (1937).

    CAS  Google Scholar 

  • The enzymatic synthesis of peptide bonds. J. of Biol. Chem. 124, 1–6 (1938).

    Google Scholar 

  • Bergmann, M., and J. S. Fruton: The specificity of proteinases. Adv. Enzymol. 1, 63–98 (1941).

    CAS  Google Scholar 

  • The significance of coupled reactions for the enzymic hydrolysis and synthesis of proteins. Ann. New York Acad. Sci. 45, 409–423 (1944).

    Google Scholar 

  • Binkley, F.: Evidence for the polynucleotide nature of cysteinylglycinase. Exper. Cell Res., Suppl. 2, 145–157 (1952).

    CAS  Google Scholar 

  • Block, K.: The synthesis of glutathione in isolated liver. J. of Biol. Chem. 179, 1245–1254 (1949).

    Google Scholar 

  • Block, K., and H. S. Anker: Synthesis of glutathione in isolated liver. J. of Biol. Chem. 169, 765–766 (1947).

    Google Scholar 

  • Borsook, H.: Peptide bond formation. Adv. Protein Chem. 8, 127–174 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Brachet, J.: La localisation des acides pentosenucléiques dans les tissus animaux et dans les Å“ufs d’Amphibiens en voie de développement. Archives de Biol. 53, 207–257 (1941).

    Google Scholar 

  • Nuclear control of enzymatic activities. Proceedings of the Seventh Symposium of the Colston Research Society. London: Butterworth Scientific Publications 1954.

    Google Scholar 

  • Caspersson, T.: Studien über den Eiweißumsatz der Zelle. Naturwiss. 29, 33–43 (1941).

    Article  CAS  Google Scholar 

  • Cell growth and cell function. New York: W. W. Norton & Company, Inc. 1950.

    Google Scholar 

  • Chayen, R., S. Chayen and E. R. Roberts: Observations on nucleic acid and polyphosphates in Torulopsis utilis. Biochim. et Biophysica Acta 16, 117–126 (1955).

    Article  CAS  Google Scholar 

  • Chibnall, A. C.: Protein metabolism in the plant. New Haven: Yale University Press 1939.

    Google Scholar 

  • Chibnall, A. C., and G. H. Wiltshire: A study with isotopic nitrogen of protein metabolism in detached runner bean leaves. New Phytologist 53, 38–43 (1954).

    Article  CAS  Google Scholar 

  • Collier, H. B.: The problem of plastein formation. I. The formation of a plastein by papain. Canad. J. Res., Sect. B 18, 255–263 (1940).

    Article  Google Scholar 

  • Danielsson, C. E.: Studies on a proteolytic enzyme from seeds of peas. Acta chem. scand. (Copenh.) 6, 791–804 (1951).

    Article  Google Scholar 

  • Dekker, C. A., S. P. Taylor and J. S. Fruton: The synthesis of peptides of methionine and their cleavage by proteolytic enzymes. J. of Biol. Chem. 180, 155–173 (1949).

    CAS  Google Scholar 

  • Dounce, A. L.: Duplicating mechanism for peptide chain and nucleic acid synthesis. Enzymologia (Den Haag) 15, 251–258 (1952).

    CAS  Google Scholar 

  • Durrel, J., and J. S. Fruton: Proteinase catalysed transamidation and its efficiency. J. of Biol. Chem. 207, 487–500 (1954).

    Google Scholar 

  • Elliott, W. H.: Adenosine triphosphate in glutamine synthesis. Nature (Lond.) 161, 128–129 (1948).

    Article  CAS  Google Scholar 

  • Studies in the synthesis of glutamine. Biochemic. J. 49, 106–112 (1951).

    Google Scholar 

  • Isolation of glutamine synthetase and glutamotransferase from green peas. J. of Biol. Chem. 201, 661–672 (1953).

    Google Scholar 

  • Fruton, J. S.: The rôle of proteolytic enzymes in the biosynthesis of peptide bonds. Yale J. Biol. a. Med. 22, 263–271 (1950).

    CAS  Google Scholar 

  • The enzymatic synthesis of peptide bonds. Symposium sur la biogénèse des proteines. II. Congr. internat. de Biochimie, Paris 1952.

    Google Scholar 

  • Fruton, J. S., W. R. Hearn, V. M. Ingram, D. S. Wiggans and M. Winitz: Synthesis of polymeric peptides in proteinase-catalysed transamidation reactions. J. of Biol. Chem. 204, 891–902 (1953).

    CAS  Google Scholar 

  • Fruton, J. S., R. B. Johnston and M. Fried: Elongation of peptide chains in enzyme-catalysed transamidation reactions. J. of Biol. Chem. 190, 39–53 (1951).

    CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: Amino acid incorporation by fragmented staphylococcal cells. Biochemic. J. 55, XI (1953).

    CAS  Google Scholar 

  • The assimilation of amino acids by bacteria. 20. The incorporation of labelled amino acids by disrupted staphylococcal cells. Biochemic. J. 59, 661–675 (1955 a).

    Google Scholar 

  • The assimilation of amino acids by bacteria. 21. The effect of nucleic acids on the development of certain enzymic activities in disrupted staphylococcal cells. Biochemic. J. 59, 675–684 (1955b).

    Google Scholar 

  • Greenberg, D. M., and T. Winnick: Plant proteases. I. Activation-inhibition reactions. J. of Biol. Chem. 135, 761–773 (1940).

    CAS  Google Scholar 

  • Enzymes that hydrolyze in carbon-nitrogen bond: proteinases, peptidases and amidases. Annual Rev. Biochem. 14, 31–68 (1945).

    Article  Google Scholar 

  • Gregory, E. G., and P. K. Sen: Physiological studies in plant nutrition. VI. The relation of respiration rate to carbohydrate and nitrogen metabolism of the barley leaf as determined by nitrogen and potassium deficiency. Ann. of Bot., N. S. 1, 521–561 (1937).

    CAS  Google Scholar 

  • Hanes, C. S., F. J. R. Hird and F. A. Isherwood: Synthesis of peptides in enzymic reactions involving glutathione. Nature (Lond.) 166, 288–292 (1950).

    Article  CAS  Google Scholar 

  • Enzymic transpeptidation reactions involving γ-glutamyl peptides and α-amino acyl peptides. Biochemic. J. 51, 25–35 (1952).

    Google Scholar 

  • Hites, B. D., R. M. Sandstedt and L. Schaumburg: Proteolytic enzymes of wheat flour, doughs and suspensions. III. The misclassification of the proteases of flour as papainases. Cereal Chem. 30, 404–412 (1953).

    CAS  Google Scholar 

  • Hopkins, F. G., and E. J. Morgan: Appearance of glutathione during the early stages of the germination of seeds. Nature (Lond.) 152, 288–290 (1943).

    Article  CAS  Google Scholar 

  • Hultin, T.: Incorporation in vivo of 15N-labelled glycine into liver fractions of newly hatched chicks. Exper. Cell Res. 1, 376–381 (1950a).

    Article  CAS  Google Scholar 

  • The protein metabolism of sea-urchin during early development studies by means of 15-Nlabelled ammonia. Exper. Cell Res. 1, 599–602 (1950b).

    Google Scholar 

  • Jansen, E. F., and A. K. Balls: Chymopapain: a new crystalline proteinase from papain. J. of Biol. Chem. 137, 459–460 (1941).

    CAS  Google Scholar 

  • Johnston, R. B., M. J. Mycek and J. S. Fruton: Catalysis of transamidation by proteolytic enzymes. J. of Biol. Chem. 185, 629–641 (1950).

    CAS  Google Scholar 

  • Jones, M. E., W. R. Hearn, M. Fried and J. S. Fruton: Transamidation reactions catalyzed by cathepsin C. J. of Biol. Chem. 195, 645–656 (1952).

    CAS  Google Scholar 

  • Lindberg, O., and L. Ernster: Chemistry and physiology of mitochondria and microsomes. Protoplasmatologia, Bd. III, A 4. 1954.

    Google Scholar 

  • Linderstrøm-Lang, K.: Proteolytic enzymes. Annual Rev. Biochem. 8, 37–58 (1939).

    Article  Google Scholar 

  • Structure and enzymatic breakdown of proteins. Cold Spring Harbor Symp. Quant. Biol. 14, 117–126 (1949).

    Google Scholar 

  • Lipmann, F.: Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1, 99–162 (1941).

    CAS  Google Scholar 

  • Mechanism of peptide bond formation. Federat. Proc. 8, 597–602 (1949).

    Google Scholar 

  • Mac Vicar, R., and R. H. Burris: Studies on nitrogen metabolism in tomato with use of isotopically labelled ammonium sulphate. J. of Biol. Chem. 176, 511–516 (1948).

    CAS  Google Scholar 

  • Mc Kee, H. S.: Review of recent work on nitrogen metabolism. New Phytologist 48, 1–83 (1949).

    Article  CAS  Google Scholar 

  • Mounfield, J. D.: The proteolytic enzymes of sprouted wheat. Biochemic. J. 30, 1778–1786 (1936).

    CAS  Google Scholar 

  • The proteolytic enzymes of sprouted wheat. Biochemic. J. 32, 1675–1684 (1938).

    Google Scholar 

  • Pauling, L.: Configuration of polypeptide chains in proteins. Record Chem. Progr. 12, 155–161 (1951).

    CAS  Google Scholar 

  • Petrie, A. H. K.: Protein synthesis in plants. Biol. Rev. Cambridge Philos. Soc. 18, 105–118 (1943).

    Article  CAS  Google Scholar 

  • Rautanen, N.: On the formation of amino-acids and amides in green plants. Acta chem. scand. (Copenh.) 2, 127–139 (1948).

    Article  CAS  Google Scholar 

  • Richards, F. J.: Physiological studies in plant nutrition. VIII. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by phosphorus and potassium supply. Ann. of Bot., N. S. 2, 491–534 (1938).

    CAS  Google Scholar 

  • Roine, P.: On the formation of primary amino-acids in the protein synthesis in yeast. Ann. Acad. Sci. fenn., Ser. A, II. Chem. 1947, No 26.

    Google Scholar 

  • Siekevitz, P.: Uptake of radioactive alanine in vitro into proteins of rat liver fractions. J. of Biol. Chem. 195, 549–565 (1952).

    CAS  Google Scholar 

  • Smith, E. L.: Proteolytic enzymes. In Enzymes, Vol. 1, Part 2 (Ed. J. B. Sumner and K. Myrbäck). New York: Academic Press Inc. 1951.

    Google Scholar 

  • Snoke, J. E.: On the mechanism of enzymic synthesis of glutathione. J. Amer. Chem. Soc. 75, 4872–4873 (1953).

    Article  CAS  Google Scholar 

  • Speck, J. F.: The enzyme synthesis of glutamine. J. of Biol. Chem. 168, 403 (1947).

    CAS  Google Scholar 

  • The enzymic synthesis of glutamine, a reaction utilizing adenosine triphosphate. J. of Biol. Chem. 179, 1405–1426 (1949).

    Google Scholar 

  • Spragg, S. P., and E. W. Yemm: Glutathione and ascorbic acid in the metabolism of germinating peas. Biochemic. J. 58, XI (1954).

    CAS  Google Scholar 

  • Stern, H., V. Allfrey, A. E. Mirsky and H. Saetren: Some enzymes of isolated nuclei. J. Gen. Physiol. 35, 559–578 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Stern,. H., and A. E. Mirsky: The isolation of wheat germ nuclei and some aspects of their glycolytic metabolism. J. Gen. Physiol. 36, 181–200 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Steward, F. C., and H. E. Street: The soluble nitrogen fractions of potato tuber, the amides. Plant Physiol. 21, 155–193 (1946).

    Article  PubMed  CAS  Google Scholar 

  • Steward, F. C., and J. F. Thompson: Proteins and protein metabolism in plants. In The Proteins, Vol. II, Part A (Ed. H. Neurath and K. Bailey). New York: Academic Press Inc. 1954.

    Google Scholar 

  • Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–454 (1949).

    CAS  Google Scholar 

  • Stumpf, P. K., and W. D. Loomis: Observations on plant amide enzyme system requiring manganese and phosphate. Arch. of Biochem. 25, 451 (1950).

    CAS  Google Scholar 

  • Stumpf, P. K., W. D. Loomis and C. Michelson: Amide metabolism in higher plants. I. Preparation and properties of a glutamyl transphorase from pumpkin seedlings. Arch. of Biochem. 30, 126 (1951).

    CAS  Google Scholar 

  • Synge, R. L. M.: Peptides of ordinary tissues. The Chemical Structure of Proteins: Ciba Foundation Symposium. London: J. A. Churchill Ltd. 1953.

    Google Scholar 

  • Szafarz, D., and J. Brachet: Le rôle du noyau dans le métabolisme de l’acide ribonucléique chez Acetabularia mediterranea. Arch. internat. Physiol. 62, 154 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Tauber, H.: Synthesis of protein-like substances by chymotrypsin. J. Amer. Chem. Soc. 73, 1288–1290 (1951a).

    Article  CAS  Google Scholar 

  • Synthesis of protein-like substances by chymotrypsin from dilute peptide digests and their electrophoretic patterns. J. Amer. Chem. Soc. 73, 4965–4966 (1951b).

    Google Scholar 

  • Vickery, H. B., G. W. Pucher, R. Schoenheimer and D. Rittenberg: The assimilation of ammonia nitrogen by tobacco plants: a preliminary study with isotopic nitrogen. J. of Biol. Chem. 135, 531–539 (1940).

    CAS  Google Scholar 

  • Vickery, H. B., G. W. Pucher, A. J. Wakman and C. S. Leavenworth: Chemical investigations of the tobacco plant. VI. Chemical changes that occur in leaves during culture in light and in darkness. Bull. Conn. Agricult. Exper. Stat. 1937, No 399, 757–832.

    Google Scholar 

  • Virtanen, A. L, and H. K. Kekkonen: Structure of plasteins. Nature (Lond.) 161, 888–889 (1948).

    Article  CAS  Google Scholar 

  • Virtanen, A. L, H. K. Kekkonen, T. Laaksonen and M. Hakala: Plastein, a mixture of higher-molecular polypeptides synthesised by proteolytic enzymes. Acta chem. scand. (Copenh.) 3, 520–524 (1949).

    Article  CAS  Google Scholar 

  • Wablsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine and glutathione. Adv. Enzymol. 13, 237–319 (1952).

    Google Scholar 

  • Walti, A.: Crystalline ficin. J. Amer. Chem. Soc. 60, 493 (1938).

    Article  CAS  Google Scholar 

  • Watson, J. D., and F. H. C. Crick: The structure of DNA. Cold Spring Harbor Symp. Quant. Biol. 18, 123–131 (1952).

    Article  Google Scholar 

  • Webster, G. C.: Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953a).

    Article  CAS  Google Scholar 

  • Enzymatic synthesis of γ-glutamylcysteine in higher plants. Plant Physiol. 28, 728–738 (1953b).

    Google Scholar 

  • Peptide bond synthesis in higher plants. I. Synthesis of glutathione. Arch. of Biochem. a. Biophysics 47, 241–250 (1953c).

    Google Scholar 

  • Nitrogen metabolism of plants. Annual Rev. Plant Physiol. 6, 43–59 (1955).

    Google Scholar 

  • Webster, G. C., and J. E. Varner: On the mechanism of the enzymatic synthesis of glutamine. J. Amer. Chem. Soc. 76, 633 (1954a).

    Article  CAS  Google Scholar 

  • Peptide bond synthesis in higher plants. II. Studies in the mechanism of synthesis of γ-glutamylcysteine. Arch. of Biochem. a. Biophysics 52, 22–32 (1954b).

    Google Scholar 

  • Peptide bond synthesis in higher plants. III. The formation of glutathione from γ-glutamylcysteine. Arch. of Biochem. a. Biophysics 55, 95–103 (1955a).

    Google Scholar 

  • Enzymatic synthesis of asparagine. Federat. Proc. 14, 301 (1955b).

    Google Scholar 

  • Willis, A. J.: Nitrogen assimilation and respiration in barley. Ph. D. Thesis: University of Bristol 1950.

    Google Scholar 

  • Synthesis of amino-acids in young roots of barley. Biochemic. J. 49, XXVII (1951).

    Google Scholar 

  • Winnick, T., W. H. Cone and D. M. Greenberg: Experiments on the activation of ficin. J. of Biol. Chem. 153, 465–470 (1944).

    CAS  Google Scholar 

  • Wood, J. G.: Nitrogen metabolism of higher plants. Annual Rev. Plant Physiol. 4, 1–22 (1953).

    Article  Google Scholar 

  • Wood, J. G., and D. H. Cruickshank: Metabolism of starving leaves. 5. Austral. J. Exper. Biol. a. Med. Sci. 22, 111–123 (1944).

    Article  CAS  Google Scholar 

  • Wood, J. G., D. H. Cruckshank and R. H. Kuchel: The metabolism of starving leaves. 1, 2 and 3. Austral. J. Exper. Biol. a. Med. Sci. 21, 37–53 (1943).

    Article  CAS  Google Scholar 

  • Wood, J. G., F. V. Mercer and C. Pedlow: The metabolism of starving leaves. 4. Austral. J, Exper. Biol. a. Med. Sci. 22, 38–43 (1944).

    Google Scholar 

  • Yemm, E. W.: Respiration of barley plants. III. Protein catabolism in starving leaves. Proc. Roy. Soc. Lond., Ser. B 123, 243–273 (1937).

    Article  CAS  Google Scholar 

  • Glutamine in the metabolism of barley plants. New Phytologist 48, 315–331 (1949).

    Google Scholar 

  • Respiration of barley plants. IV. Protein catabolism and the formation of amides in starving leaves. Proc. Roy. Soc. Lond., Ser. B 136, 632–649 (1950).

    Google Scholar 

  • Cellular oxidations and the synthesis of amino-acids and amides in plants. Proceedings of the Seventh Symposium of the Colston Research Society. London: Butterworth Scientific Publications 1954.

    Google Scholar 

  • The metabolism of senescent leaves. Colloquium in ageing transient tissues. The Ciba Foundation 1955.

    Google Scholar 

  • Yemm, E. W., and B. F. Folkes: The regulation of respiration during the assimilation of nitrogen in Torulopsis utilis. Biochemic. J. 57, 495–508 (1954).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Yemm, E.W. (1958). Biochemical mechanisms in the synthesis and breakdown of proteins. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics