Abstract

The connection between the type of diet and incidence of scurvy was early recognized, but it was not before the notion of accessory food factors, or vitamins, had been clearly formulated in 1912 (G. Hopkins, C. Funk) and a good test object for the antiscorbutic factor had been found in the guinea pig that serious attempts to isolate this factor (vitamin C. Drummond 1920) could begin. Among the early workers in this field S. S. Zilva and J. Tillmans should be specially mentioned. The decisive step was taken by A. Szent-Györgyi (1928), however, who isolated a strongly reducing substance of the molecular formula C6H8O6 from adrenal cortex, from oranges and from cabbage. This “hexuronic acid” easily reduced indicators like 2,6-dichlorophenol-indophenol which had earlier been used by Zilva and by Tillmans for studying the reducing substances usually associated with the antiscorbutic factor of plant materials. That this association was not absolute had ealier been a serious obstacle for further progress, but now it soon became clear that the vitamin C could be reversibly oxidized without loss of the antiscorbutic activity (Tillmans), and that hexuronic acid was in fact identical with the reduced form of this factor. The new name “ascorbic acid” was then coined (Szent-Györgyi and Haworth 1933), and the following terminology adopted:
$${\rm{Vitamin}}\;{\rm{C}} = {\rm{ascorbic}}\;{\rm{acid}} + {\rm{dehydroascorbic}}\;{\rm{acid}}.$$

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Åberg, B.: Effects of light and temperature on the ascorbic acid content of green plants. Kungl. Lantbrukshögsk. Ann. (Uppsala) 13, 239–273 (1946).Google Scholar
  2. Changes in the ascorbic acid content of darkened leaves as influenced by temperature, sucrose application, and severing from the plant. Physiol. Plantarum (Copenh.) 2, 164–183 (1949).Google Scholar
  3. On the effect of different sugars upon the ascorbic acid content of detached leaves. Kungl. Lantbrukshögsk. Ann. (Uppsala) 20, 125–138 (1953).Google Scholar
  4. Åberg, B., and I. Ekdahl: Effects of nitrogen fertilization on the ascorbic acid content of green plants. Physiol. Plantarum (Copenh.) 1, 290–329 (1948).CrossRefGoogle Scholar
  5. Algéus, S.: Untersuchungen über die Ernährungsphysiologie der Chloro-phyceen. Bot. Not. (Lund) 1946, 129–280. (Also: Diss., Lund.)Google Scholar
  6. Allison, R. M., and C. M. Driver: The effect of variety, storage and locality on the ascorbic acid content of the potato tuber. J. Sci. Food a. Agricult. 4, 386–396 (1953).CrossRefGoogle Scholar
  7. Arcus, C. L., and S. S. Zilva: The photochemical decomposition of l-ascorbic acid. II. Biochemic. J. 34, 61–66 (1940).Google Scholar
  8. Arkon, D. I., F. R. Whatley and M. B. Allen: Vitamin K as a cofactor of photosynthetic phosphorylation. Biochim. et Biophysica Acta 16, 607–608 (1955).CrossRefGoogle Scholar
  9. Asenjo, C. F., and A. R. F. de Guzmán: The high ascorbic acid content of the West Indian cherry. Science (Lancaster, Pa.) 103, 219 (1946).Google Scholar
  10. Asselbergs, E. A. M., and F. J. Francis: Studies on the formation of vitamin C in slices of potato tissue. Canad. J. Bot. 30, 665–673 (1952).CrossRefGoogle Scholar
  11. Ball, E. G.: Studies on oxidation-reduction. XXIII. Ascorbic acid. J. of Biol. Chem. 118, 219–239 (1937).Google Scholar
  12. Barker, J.: The ascorbic acid content of potato tubers. I. New Phytologist 49, 11–22 (1950).CrossRefGoogle Scholar
  13. Barker, J., and L. W. Mapson: The ascorbic acid content of potato tubers. II.–III. New Phytologist 49, 283–303 (1950); 51, 90–115 (1952).CrossRefGoogle Scholar
  14. Beevers, H.: The oxidation of reduced diphosphopyridine nucleotide by an ascorbate system from cucumber. Plant Physiol. 29, 265–269 (1954).PubMedCrossRefGoogle Scholar
  15. Bezssonoff, N., et M. Woloszyn: Sur la mise en évidence, dans les tissus, de la forme réversible, demi-oxydée, de la vitamine C. C. r. Soc. Biol. Paris 132, 538–540 (1939).Google Scholar
  16. Bonetti, D.: Osservazioni preliminari sopra il ritmo diurno del rapporto acido ascorbico ridotto/acido ascorbico totale nelle foglie. Boll. Soc. ital. Biol. sper. 25, 337–339 (1949).Google Scholar
  17. Brown, G. B.: The ascorbic acid content of tomatoes as related to illumination. Proc. Amer. Soc. Horticult. Sci. 65, 342–348 (1955).Google Scholar
  18. Busing, K.-H., u. F. Peters: Über die Ascorbinsäurebildung des B. prodigiosus aus Xylose Biochem. Z. 304, 134–136 (1940).Google Scholar
  19. Bukatsch, F.: Über den Askorbinsäuregehalt der Coniferennadeln. Vitamine u. Hormone 4, 192–207 (1943).Google Scholar
  20. Ascorbinsäuregehalt und Atmungsintensität. Phyton (Horn, N.-Oe.) 4, 35–45 (1952).Google Scholar
  21. Burns, J. J., E. H. Mosbach, S. Schulenberg and J. Reichenthal: Studies on the incorporation of C14 administered as l-sorbose into l-ascorbic acid and d-glucose in rats. J. of Biol. Chem. 214, 507–514 (1955).Google Scholar
  22. Catel, W., W. Schuphan, L. Barth, H. Kathen u. I. Weinmann: Tier- und human-physiologische Untersuchungen über die Vitamin C-Wirksamkeit von Apfelsorten verschiedener Ascorbinsäuregehalte. Biochem. Z. 325, 109–122 (1954).PubMedGoogle Scholar
  23. Chen, S. D., and C. Schuck: Diketogulonic acid, dehydroascorbic acid, and ascorbic acid content of four fruits. Food Res. 16, 507–509 (1951).Google Scholar
  24. Chen, Y.-T., F. A. Isherwood and L. W. Mapson: Quantitative estimation of ascorbic acid and related substances in biological extracts by separation on a paper chromatogram. Biochemic. J. 55, 821–823 (1953).Google Scholar
  25. Daglish, C.: The occurrence of ascorbic acid in the walnut (Juglans regia). Biochemic. J. 49, 639–642 (1951).Google Scholar
  26. Dann, W. J., and G. H. Satterfield: Estimation of the vitamins. Biol. Symp. (Lancaster, Pa.) 12, (1947).Google Scholar
  27. Drummond, J. C: The nomenclature of the so-called accessory food factors (vitamins). Biochemic. J. 14, 660 (1920).Google Scholar
  28. Eddy, B. P., and M. Ingram: Interactions between ascorbic acid and bacteria. Bacter. Rev. 17, 93–107 (1953).Google Scholar
  29. Eddy, B. P., M. Ingram and L. W. Mapson: Reduction of dehydroascorbic acid by bacteria. I.–II. Biochemic. J. 50, 601–605; 51, 375–379 (1952).Google Scholar
  30. Egle, K.: Über die Wirkung von Vitamin C auf die Kohlensäureassimilation und die Atmung submerser Wasserpflanzen. Beitr. Biol. Pflanz. 28, 145–159 (1951).Google Scholar
  31. Ekman, B.: Oxydation zyklischer Verbindungen durch Vitamin C. Acta physiol. scand. (Stockh.) 8, Suppl. 22, 1–196 (1944).Google Scholar
  32. Emilsson, B.: Studies on the rest period and dormant period in the potato tuber. Acta agricult. suecana (Stockh.) 3, 189–284 (1949).Google Scholar
  33. Erkama, J.: Colorimetric determination of vitamin C with 2,6-dichlorophenol-indophenol. Suom. Kemist. A 19, 21–25 (1946).Google Scholar
  34. Euler, H. V., u. H. Hasselquist: Reduktone. Stuttgart: Ferdinand Enke 1950.Google Scholar
  35. Fedorova, V. S.: Influence of geographical conditions and environment upon vitamin accumulation by certain wild plant species of Siberia. C. r. Acad. Sci. URSS. 53, 361–364 (1946).Google Scholar
  36. Ferres, H. M., and W. D. Brown: The effects of mineral nutrients on the concentration of ascorbic acid in legumes and two leaf vegetables. Austral. J. Exper. Biol. a. Med. Sci. 24, 111–119 (1946).CrossRefGoogle Scholar
  37. Franke, W.: Über die Biosynthese des Vitamins C. I. Die Beziehungen zwischen Vitamin C und der Atmung. Planta (Berl.) 44, 437–458 (1954).CrossRefGoogle Scholar
  38. Über die Biosynthese des Vitamins C. II. Zur Biochemie und Physiologie der Vitamin C-Synthese. Planta (Berl.) 45, 166–197 (1955a).Google Scholar
  39. Ascorbinsäure. In: Moderne Methoden der Pflanzenanalyse, herausgeg. von K. Paech u. M. V. Tracey, Bd. 2, S. 95–112. 1955b.Google Scholar
  40. French, R. B., and O. D. Abbott: Levels of carotene and ascorbic acid in Florida-grown foods. Florida Agricult. Exper. Stat. Bull. 1948, No 444, 1–21.Google Scholar
  41. Galli, A.: Über die Bildung der Ascorbinsäure und ihre Stellung im Stoffwechsel von Aspergillus niger. Ber. Schweiz. bot. Ges. 56, 113–174 (1946).Google Scholar
  42. Géro, E.: Progrès récents dans le dosage chimique de l’acide ascorbique. Ann. Nutrit. Aliment. 2, 159–178 (1948).Google Scholar
  43. Etude critique de quelques méthodes de dosage de l’acide ascorbique. Mise au point d’une nouvelle technique de dosage de l’acide ascorbique. Bull. Soc. Chim. biol. Paris 31, 817–824, 825–838 (1949).Google Scholar
  44. Giroud, A.: L’acide ascorbique dans la cellule et les tissus. Protoplasma-Monogr. 16, 1–187 (1938).Google Scholar
  45. Glick, D.: Die quantitative Verteilung der Ascorbinsäure im wachsenden Gerstenembryo. Z. physiol. Chem. 245, 211–216 (1937).CrossRefGoogle Scholar
  46. Grant, E. P.: Apples as a source of vitamin C. Sci. Agricult. 27, 162–164 (1947).Google Scholar
  47. Günther, E., E. F. Heeger u. C. Rosenthal: Der Vitamin-C-Gehalt der in Deutschland hauptsächlich angebauten Heil- und Gewürzpflanzen in kritisch-experimenteller Betrachtung. Pharmazie 7, 24–50 (1952).PubMedGoogle Scholar
  48. Guthrie, J. D.: Factors influencing the development of ascorbic acid and glutathione in potato tubers following treatment with ethylene chlorhydrin. Contrib. Boyce Thompson Inst. 9, 17–39 (1937).Google Scholar
  49. György, P.: Vitamin methods, Bd. 1. New York: Acad. Press Inc. 1950.Google Scholar
  50. Hägen, U.: Beobachtungen zur Wanderung der Ascorbinsäure im Assimilatstrom. Phyton (Horn, N.-Oe.) 4, 322–324 (1953a).Google Scholar
  51. Über die Tagesrhythmik des Vitamin C-Gehaltes in Blättern. Phyton (Horn, N.-Oe.) 5, 1–15 (1953b).Google Scholar
  52. Hamner, K. C.: Minor elements and vitamin content of plants. Soil Sci. 60, 165–171 (1945).CrossRefGoogle Scholar
  53. Harris, L. J., and M. Olliver: Vitamin methods. 3. The reliability of the method for estimating vitamin C by titration against 2,6-dichlorophenol-indophenol. Biochemic. J. 36, 155–182 (1942).Google Scholar
  54. Harris, L. J., and S. N. Ray: Specificity of hexuronic (ascorbic) acid as antiscorbutic factor. Biochemic. J. 27, 580–589 (1933).Google Scholar
  55. Haworth, W. N., and E. L. Hirst: The chemistry of ascorbic acid (vitamin C) and its analogues. Erg. Vitamin- u. Hormonforsch. 2, 160–191 (1939).Google Scholar
  56. Hendley, D. D., and E. E. Conn: Enzymatic reduction and oxidation of glutathione by illuminated chloroplasts. Arch. of Biochem. a. Biophysics 46, 454–464 (1953).CrossRefGoogle Scholar
  57. Hewitt, E. J., S. C. Agarwala and E. W. Jones: Effect of molybdenum status on the ascorbic acid content of plants in sand culture. Nature (Lond.) 166, 1119–1120 (1950).CrossRefGoogle Scholar
  58. Hewston, E. M., M. Fisher and E. Orent-Keiles: Comparison of the 2,6-dichlorophenol-indophenol and 2,4-dinitrophenylhydrazine methods with the Crampton bioassay for determining vitamin C valus in foods. U. S. Dept. Agricult. Techn. Bull. 1951, No 1023, 1–30.Google Scholar
  59. Hirst, E. L.: The structure and synthesis of vitamin C (ascorbic acid) and its analogues. Fortschr. Chem. organ. Naturstoffe 2, 132–159 (1939).Google Scholar
  60. Hivon, K.J., D. M. Doty and F. W. Quackenbush: Ascorbic acid and ascorbic acid oxidizing enzymes of green bean plants deficient in manganese. Plant Physiol. 26, 832–835 (1951).PubMedCrossRefGoogle Scholar
  61. Horowitz, H. H., and C. G. King: The conversion of glucose-6-C14 to ascorbic acid by the albino rat. J. of Biol. Chem. 200, 125–128 (1953a).Google Scholar
  62. Glucuronic acid as a precursor of ascorbic acid in the albino rat. J. of Biol. Chem. 205, 815–821 (1953b).Google Scholar
  63. Huelin, F. E.: Investigations on the stability and determination of dehydroascorbic acid. Austral. J. Sci. Res. B 2, 346–354 (1949).Google Scholar
  64. Studies on the anaerobic decomposition of ascorbic acid. Food Res. 18, 633–639 (1953).Google Scholar
  65. Hunter, A. S., W. C. Kelly and G. F. Somers: Effects of variations in soil moisture tension upon the ascorbic acid and carotene content of turnip greens. Agronomy J. 42, 96–99 (1950).CrossRefGoogle Scholar
  66. Isherwood, F. A., Y. T. Chen and L. W. Mapson: Synthesis of l-ascorbic acid in plants and animals. Biochemic. J. 56, 1–15 (1954a).Google Scholar
  67. Isolation of d-glyceric acid from cress seedlings and its relationship to the synthesis of l-ascorbic acid. Biochemic. J. 56, 15–21 (1954b).Google Scholar
  68. Ishihara, Y., S. Umemoto and Y. Matsubara: Vitamin C contents of marine algae in Hokkaido. Mem. Fac. Agricult. Hokkaido Univ. 1, 83–86 (1951). Chem. Abstr. 47, 7611.Google Scholar
  69. Jackel, S. S., E. H. Mosbach and C. G. King: Ion exchange separation of ascorbic acid and isolation of the 2,4-dinitrophenylosazone. Arch. of Biochem. a. Biophysics 31, 442–449 (1951).CrossRefGoogle Scholar
  70. Johansson, E.: Determinations of ascorbic acid content of fruits and fruit products, some vegetables, and other plants. (Swedish with an Engl. summary.) Medd. Statens Trädgårdsförsök (Sweden) 4, 1–53 (1939).Google Scholar
  71. Jones, R. W., and K. C. Hamner: The intracellular distribution of ascorbic acid in turnip leaves. Plant Physiol. 28, 314–316 (1953).PubMedCrossRefGoogle Scholar
  72. Kakukawa, T.: Weitere Untersuchungen über den Askorbinsäure-Gehalt der Krautpflanzen, mit besonderer Berücksichtigung der Schattenpflanzen. Sci. Rep. Tôhoku Imp. Univ., Ser. IV, 17, 289–300 (1943a).Google Scholar
  73. Schwankungen des Gehalts an Askorbinsäure und Kohlenhydraten in Pflanzenblättern während der verschiedenen Tageszeiten. Sci. Rep. Tôhoku Imp. Univ., Ser. IV 17, 301–307 (1943b).Google Scholar
  74. Kellermann, H.: Studien über den Vitamin C-Gehalt der Pflanzen. Phyton (Horn, N.-Oe.) 1, 178–179 (1949).Google Scholar
  75. Kenyon, J., and N. Munro: The isolation and some properties of dehydro-l-ascorbic acid. J. Chem. Soc. (Lond.) 1948 I, 158–161.CrossRefGoogle Scholar
  76. Kern, M., and E. Racker: Activation of a DPNH oxidase by an oxidation product of ascorbic acid. Arch. of Biochem. a. Biophysics 48, 235–236 (1954).CrossRefGoogle Scholar
  77. Klose, A. A., J. Peat and H. L. Fevold: Vitamin C content of walnuts (Persian) during growth and development. Plant Physiol. 23, 133–141 (1948).PubMedCrossRefGoogle Scholar
  78. Koizumi, T., and T. Kakukawa: On the vitamin-C (ascorbic acid) content of herbaceous plants and marine algae, considering factors influencing it. Sci. Rep. Tôhoku Imp. Univ., Ser. IV 15, 105–120 (1940).Google Scholar
  79. Kröner, W., u. W. Völksen: Über die Verteilung der Ascorbinsäure in einigen pflanzlichen Speicherorganen. Biochem. Z. 314, 409–421 (1943).Google Scholar
  80. Lamden, M. P., and R. S. Harris: Browning of ascorbic acid in pure solutions. Food Res. 15, 79–89 (1950).PubMedGoogle Scholar
  81. Lawrence, J. M.: Formation of reducing substances in pea seeds. Arch. of Biochem. 27, 1–5 (1950).Google Scholar
  82. Lecat, P.: Répartition et variations du système ascorbique chez les végétaux. Plant a. Soil 3, 267–308 (1951).CrossRefGoogle Scholar
  83. Lona, F., e E. Porzio-Giovanola: Ricerche sulla fisiologia dell’acido ascorbico. VII. Contenuto in acido ascorbico delie piante in relazione al fattore termoperiodico. (With an Engl. summary.) Nuovo Giorn. bot. ital. 58, 462–474 (1951).CrossRefGoogle Scholar
  84. Lucas, R. E.: Effect of copper fertilization on carotene, ascorbic acid, protein, and copper contents of plants grown on organic soils. Soil Sci. 65, 461–469 (1948).CrossRefGoogle Scholar
  85. Luger, H.: Der Einfluß der Askorbinsäure auf die Assimilation und Atmung höherer Pflanzen. Protoplasma 44, 212–238 (1954).CrossRefGoogle Scholar
  86. Lugg, J. W. H., and R. A. Weller: Germinating seeds as a source of vitamin C in human nutrition. I.–II. Austral. J. Exper. Biol. a. Med. Sci. 21, 111–114, 211–214 (1943).CrossRefGoogle Scholar
  87. Lunde, G.: Vitamine in frischen und konservierten Nahrungsmitteln. Berlin: Springer 1940.CrossRefGoogle Scholar
  88. L’Vov, S. D., i L. A. Altukhova: Vitamin C and its relation to frost resistance of winter wheats. Dokl. Akad. Nauk SSSR. 80, 113–116 (1951). Chem. Abstr. 49, 11094.PubMedGoogle Scholar
  89. Lwoff, S., G. K. Guzwitsch i A. Pantelejeff: On the functional role of vitamin C in plants. (Russian with an Engl. summary.) Utschenie Sapiski GLU 75, 151–200 (1945).Google Scholar
  90. Lyon, C. B., and K. C. Beeson: Influence of toxic concentrations of micro-nutrient elements in the nutrient medium on vitamin content of turnips and tomatoes. Bot. Gaz. 109, 506–520 (1948).CrossRefGoogle Scholar
  91. Mack, G. L., and D. K. Tressler: Vitamin C in vegetables. VI. A critical investigation of the Tillmans method for the determination of ascorbic acid. J. of Biol. Chem. 118, 735–742 (1937).Google Scholar
  92. Mairold, F., u. F. Weber: Notiz über Cephalanthera-Albinos. Protoplasma 39, 275–277 (1950).CrossRefGoogle Scholar
  93. Mapson, L. W.: Function of ascorbic acid in plants. Vitamins a. Hormones 11, 1–28 (1953).CrossRefGoogle Scholar
  94. Biochemical systems (involving ascorbic acid). In Sebrell and Harris, The Vitamins, vol. 1, p. 211–242. 1954.Google Scholar
  95. The biosynthesis of ascorbic acid. Vitamins a. Hormones 13, 71–100 (1955).Google Scholar
  96. Mapson, L. W., and E. M. Cruickshank: Effect of various salts on the synthesis of ascorbic acid and carotene in cress seedlings. Biochemic. J. 41, 197–205 (1947).Google Scholar
  97. Mapson, L. W., and M. Ingram: Observations on the use of Escherichia coli for the reduction and estimation of dehydroascorbic acid. Biochemic. J. 48, 551–559 (1951).Google Scholar
  98. Mapson, L. W., and F. A. Isherwood: Biological synthesis of ascorbic acid: the conversion of derivatives of d-galacturonic acid into l-ascorbic acid by plant extracts. Biochemic. J. 59, IX–X (1955).Google Scholar
  99. Mapson, L. W., F. A. Isherwood and Y. T. Chen: Biological synthesis of l-ascorbic acid: the conversion of l-galactono-γ-lactone into l-ascorbic acid by plant mitochondria. Biochemic. J. 56, 21–28 (1954).Google Scholar
  100. Marx, T., u. U. Sahm: Über den Einfluß von Mangan- und Bordüngungen auf den l-Ascorbinsäuregehalt der Tomaten. II. Z. Pflanzenernähr., Düng. u. Bodenkde 70, 58–65 (1955).CrossRefGoogle Scholar
  101. Mathot, H. J.: Factoren die de variatie van het vitamine C in de plant bepalen. Diss. Wageningen 1945.Google Scholar
  102. Medawara, M. R.: Notizen über Vitamin C in der Pflanze. Phyton (Horn, N.-Oe.) 2, 193–212 (1950).Google Scholar
  103. Metzner, H.: Die Reduktion wäßriger Silbernitratlösungen durch Chloroplasten und andere Zellbestandteile. Protoplasma 41, 129–167 (1952).CrossRefGoogle Scholar
  104. Mills, M. B., C. M. Damron and J. H. Roe: Ascorbic acid, dehydroascorbic acid, and diketogulonic acid. Analyt. Chem. 21, 707–709 (1949).CrossRefGoogle Scholar
  105. Mills, M. B., and J. H. Roe: A critical study of proposed modifications of the Roe and kuether method for the determination of ascorbic acid, with further contributions to the chemistry of this procedure. J. of Biol. Chem. 170, 159–164 (1947).Google Scholar
  106. Mitchell, L. C, and W. I. Patterson: The separation and identification of l-ascorbic, d-isoascorbic, and d-glucoascorbic acids by paper chromatography. J. Assoc. Offic. Agricult. Chem. 36, 1127–1130 (1953).Google Scholar
  107. Moldtmann, H. G.: Untersuchungen über den Ascorbinsäuregehalt der Pflanzen in seiner Abhängigkeit von inneren und äußeren Faktoren. Planta (Berl.) 30, 297–342 (1939).CrossRefGoogle Scholar
  108. Murneek, A. E., L. Maharg and S. H. Wittwer: Ascorbic acid (vitamin C) content of tomatoes and apples. Univ. Missouri Agricult. Exper. Stat., Res. Bull. 1954, No 568, 1–24.Google Scholar
  109. Murphy, E. F., and M. R, Covell: Tomatoes in Maine. Maine Agricult. Exper. Stat. Bull. 1951, No 489, 1–70.Google Scholar
  110. Mustard, M. J.: Ascorbic acid content of some miscellaneous tropical and subtropical plants and plant products. Food Res. 17, 31–35 (1952).Google Scholar
  111. Nagai, S.: Experimental studies on the reduction of silver nitrate by plant cell. II. Nature and responsibility of substances which cause the reduction. J. Inst. Polytechn. Osaka City Univ., Ser. D 2, 1–8 (1951).Google Scholar
  112. Nagai, S., and E. Ogata: Experimental studies on the reduction of silver nitrate by plant cell. III. Further evidences on the role of ascorbic acid in the Molish reaction. IV. The reaction in etiolated seedlings. J. Inst. Polytechn. Osaka City Univ., Ser. D 3, 37–55 (1952).Google Scholar
  113. Nason, A., W. D. Wosilait and A. J. Terrell: The enzymatic oxidation of reduced pyridine nucleotides by an oxidation product of ascorbic acid. Arch. of Biochem. a. Biophysics 48, 233–235 (1954).CrossRefGoogle Scholar
  114. Neubauer, M.: Das Vitamin C in der Pflanze. Protoplasma 33, 345–370 (1939).CrossRefGoogle Scholar
  115. Newcomb, E. H.: Effect of auxin on ascorbic oxidase activity in tobacco pith cells. Proc. Soc. Exper. Biol. a. Med. 76, 504–509 (1951).Google Scholar
  116. Noggle, G. R.: The physiology of polyploidy in plants. 1. Review of the literature. Lloydia 9, 153–173 (1946).Google Scholar
  117. A chemical study of diploid and tetraploid rye. Lloydia 10, 19–37 (1947).Google Scholar
  118. Olliver, M.: Estimation (of ascorbic acid). In Sebrell and Harris, The Vitamins, vol. 1, p. 242–259. 1954.Google Scholar
  119. Owen, J. A., B. Iggo and D. B. Horn: Use of p-chloromercuri-benzoic acid in the determination of ascorbic acid in the presence of sulphydryl compounds. Nature (Lond.) 174, 701 (1954).CrossRefGoogle Scholar
  120. Paech, K.: Stoffwechsel organischer Verbindungen. II Fortschr. Bot. 15, 313–347 (1954).Google Scholar
  121. Pal, R. K., and N. M. Bose: A comparison of the antiscorbutic values of some common pulses and cereals in a sprouted condition. Ann. Biochem. a. Exper. Med. (Calcutta) 5, 31–32 (1945).Google Scholar
  122. Panse, T. B., and A. Sreenivasan: Vitamin C in drumstick leaf. Nature (Lond.) 155, 518 (1945).CrossRefGoogle Scholar
  123. Penney, J. R., and S. S. Zilva: The isolation of barium and calcium diketo-l-gulonates and the biological significance of 2:3-diketo-l-gulonic acid. Biochemic. J. 39, 1–4 (1945a).Google Scholar
  124. Interfering substances in the Roe and Kuether method for the determination of ascorbic acid. Biochemic. J. 39, 392–397 (1945b).Google Scholar
  125. Popovskaya, E. M.: Formation and movement of ascorbic acid in plants. (Russian.) Bio-chimija 15, 249–255 (1950).Google Scholar
  126. Chem. Abstr. 44, 10063.Google Scholar
  127. Povolockaja, K. L.: Vitamin C in germinating seeds. C. r. Acad. Sci. URSS. 17, 35–38 (1937).Google Scholar
  128. Prochazka, Z.: Combined ascorbic acid. V.–VI. Chem. Listy 47, 1637–1642, 1643–1646 (1953).Google Scholar
  129. Chem. Abstr. 48, 4033.Google Scholar
  130. Prokoshev, S. M.: Traumatic formation of vitamin C in sliced potatoes. (Russian with an Engl. summary.) Biochimija 9, 36–54 (1944).Google Scholar
  131. Prokoshev, S. M., i. E. I. Dantsheva: Factors of ascorbic acid biosynthesis. (Russian with an Engl. summary.) Biochimija 11, 481–492 (1946).Google Scholar
  132. Prokoshev, S. M., i E. I. Petrochenko: Interrelation of protein and ascorbic acid in potato tubers. Dokl. Akad. Nauk SSSR. 61, 313–316 (1948).Google Scholar
  133. Chem. Abstr. 43, 279.Google Scholar
  134. Raadts, E.: Über den Einfluß der Askorbinsäure auf die Auxinaktivierung. Planta (Berl.) 36, 103–130 (1948).CrossRefGoogle Scholar
  135. Rabinowitch, E. I.: Photosynthesis, vol. I. New York: Interscience Publishers 1945.Google Scholar
  136. Reichstein, T., u. V. Demole: Übersicht über Chemie und biologische Wirkung der Ascorbinsäuregruppe (Vitamin C). Festschr. E. C. Barell, S. 107–138. Basel 1936.Google Scholar
  137. Reid, M. E.: Localization of ascorbic acid in the cowpea plant at different periods of development. Amer. J. Bot. 24, 445–447 (1937).CrossRefGoogle Scholar
  138. Relation of vitamin C to cell size in the growing region of the primary root of cowpea seedlings. Amer. J. Bot. 28, 410–415 (1941a).Google Scholar
  139. Metabolism of ascorbic acid in cowpea plants. Bull. Torrey Bot. Club 68, 359–371 (1941b).Google Scholar
  140. Relation of temperature to the ascorbic acid content of cowpea plants. Bull. Torrey Bot. Club 68, 519–530 (1941c).Google Scholar
  141. Interrelations of calcium and ascorbic acid to cell surfaces and intercellular substances and to physiological action. Physiologic. Rev. 23, 76–99 (1943).Google Scholar
  142. Robinson, W. B.: The effect of sunlight on the ascorbic acid content of strawberries. J. Agricult. Res. 78, 257–262 (1949).Google Scholar
  143. Roe, J. H.: Chemical determination of ascorbic, dehydroascorbic, and diketogulonic acids. Methods of Biochem. Anal. 1, 115–139 (1954).CrossRefGoogle Scholar
  144. Roe, J. H., M. B. Mills, M. J. Oesterling and C. M. Damron: The determination of diketo-l-gulonic acid, dehydro-l-ascorbic acid, and l-ascorbic acid in the same tissue extract by the 2,4-dinitrophenylhydrazine method. J. of Biol. Chem. 174, 201–208 (1948).Google Scholar
  145. Roe, J. H., and M. J. Oesterling: The determination of dehydroascorbic acid and ascorbic acid in plant tissues by the 2,4-dinitrophenylhydrazine method. J. of Biol. Chem. 152, 511–517 (1944).Google Scholar
  146. Rönnerstrand, S.: Untersuchungen über Oxydase, Peroxydase und Ascorbinsäure in einigen Meeresalgen. Diss. Lund 1943.Google Scholar
  147. Rosanova, M. A.: Seasonal variation in the accumulation of ascorbic acid in leaves and fruits of active and inactive species of wild roses. C. r. Acad. Sci. URSS. 53, 633–635 (1946).Google Scholar
  148. Rosenberg, H. R.: Chemistry and physiology of the vitamins. New York: Interscience Publishers, revised repr. 1945.Google Scholar
  149. Sabalitschka, t., u. I. Marggraff: Zur Bestimmung von Vitamin C. 7. Zur Annahme einer in Pflanzenmaterial an Eiweiß gebundenen, schwer nachweisbaren Ascorbinsäure. Pharmazie 3, 127–129 (1948).PubMedGoogle Scholar
  150. Scherbakov, B. I.: The influence of light of various spectral regions on vitamin C Synthesis in plants. Dokl. Akad. Nauk SSSR. 66, 1149–1152 (1949).Google Scholar
  151. Chem. Abstr. 43, 8012.Google Scholar
  152. Scheunert, A., u. E. Theile: Ein Beitrag zur Kenntnis des Vitamin-C-Gehaltes in grünen Pflanzen unter besonderer Berücksichtigung des Gehaltes an Dehydroascorbinsäure. Pharmazie 7, 776–780 (1952).PubMedGoogle Scholar
  153. Schmidt, H., u. H. Staudinger: Papierchromatographische Bestimmung von Ascorbinsäure und Dehydroascorbinsäure. Biochem. Z. 326, 343–349 (1955).PubMedGoogle Scholar
  154. Schröderheim, J.: Untersuchungen über den Ascorbinsäuregehalt in Hagebutten. Lunds Univ. Årsskr., N. F., Avd. 2 37, 1–57 (1941).Google Scholar
  155. Schwarze, W. K., u. E. Günther: Vergleichende Untersuchungen zur Vitamin-C-Bestimmung in Pflanzenmaterial. Biochem. Z. 319, 139–154 (1948).Google Scholar
  156. Seybold, A., u. H. Mehner: Über den Gehalt von Vitamin C in Pflanzen. Sitzgsber. Heidelberg. Akad. Wiss., Math.-naturwiss. Kl. 1948 (10), 1–132 (215–346).Google Scholar
  157. Shaw, A. C., and L. C. Pascoe: Formation and distribution of vitamin C in the radicle and cotyledon of the broad bean (Vicia faba). Nature (Lond.) 164, 624 (1949).CrossRefGoogle Scholar
  158. Shaw, A. C, and R. T. Tatchell: Distribution of vitamin C in the tip of the broad bean radicle. Nature (Lond.) 167, 116–117 (1951).CrossRefGoogle Scholar
  159. Shinke, N., and T. Hiraoka: Vitamin C content of some wild plants. Seiri Seitai 1, 61–66 (1947).Google Scholar
  160. Chem. Abstr. 45, 8087.Google Scholar
  161. Sideris, C. P., and H. Y. Young: Effects of iron on chlorophyllous pigments, ascorbic acid, acidity and carbohydrates of Ananas comosus (L.) Merr., supplied with nitrate or ammonium salts. Plant Physiol. 19, 52–75 (1944).PubMedCrossRefGoogle Scholar
  162. Smith, F.: Chemistry (of ascorbic acid). In Sebrell and Harris, The Vitamins, vol. 1, p. 180–208. 1954.Google Scholar
  163. Smith, F. G.: Ascorbic acid formation in potato tuber slices. Plant Physiol. 27, 736–744 (1952).PubMedCrossRefGoogle Scholar
  164. Snow, G. A., and S. S. Zilva: A critical examination of Lugg’s method for the determination of l-ascorbic acid. II. Biochemic. J. 38, 458–467 (1944).Google Scholar
  165. Somers, G. F., and K. C. Beeson: The influence of climate and fertilizer practices upon the vitamin and mineral content of vegetables. Adv. Food Res. 1, 291–324 (1948).CrossRefGoogle Scholar
  166. Somers, G. F., and W. C. Kelly: Ascorbic acid and dry matter accumulation in turnip and broccoli leaf discs after infiltration with inorganic salts, organic acids, and some enzyme inhibitors. Plant Physiol. 26, 90–109 (1951).PubMedCrossRefGoogle Scholar
  167. Somers, G. F., W. C. Kelly and K. C. Hamner: Changes in ascorbic acid content of turnip-leaf discs as influenced by light, temperature, and carbon dioxide concentration. Arch. of Biochem. 18, 59–67 (1948).Google Scholar
  168. Influence of nitrate supply upon the ascorbic acid content of tomatoes. Amer. J. Bot. 38, 472–475 (1951).Google Scholar
  169. Somers, G. F., W. C. Kelly, E. J. Thacker and A. M. Redder: The occurrence of substances which interfere with the determination of ascorbic acid in antho-cyanin-containing plant products. Food Res. 16, 62–70 (1951).PubMedGoogle Scholar
  170. Sosa-Bourdouil, C.: Répartition de l’acide ascorbique dans les organes floraux au cours du développement. C. r. Acad. Sci. Paris 212, 1000–1002 (1941).Google Scholar
  171. Répartition de l’acide ascorbique dans quelques fougères du Muséum. Bull. Mus. nat. Hist. natur., Sér. II 14, 477–479 (1942).Google Scholar
  172. Stocker, O.: Tiroler Sanddorn (Hippophae rhamnoides L.) als Vitamin C-Höchstleistungspflanze. Züchter 19, 9–13 (1948).Google Scholar
  173. Strohecker, R., W. Heimann u. F. Matt: Zur quantitativen Bestimmung der Ascorbinsäure auf papierchromatographischem Weg. Z. anal. Chem. 145, 401–417 (1955).CrossRefGoogle Scholar
  174. Sugawara, T.: Studies on the formation of ascorbic acid (vitamin C) in plants. III.–IV. Jap. J. Bot. 11, 147–165, 343–356 (1941).Google Scholar
  175. Studies on the formation of ascorbic acid (vitamin C) in plants. VI. Relation among formation of ascorbic acid, development of chlorophyll, and beginning of photosynthesis. Jap. J. Bot. 15, 10–14 (1955).Google Scholar
  176. Sullivan, M. X., and H. C. N. Clark: A highly specific procedure for ascorbic acid. Federat. Proc. 12, 277 (1953).Google Scholar
  177. Sumtsov, B. M.: Properties of bound ascorbic acid. Biochimija 13, 492–500 (1948).Google Scholar
  178. Chem. Abstr. 43, 3079.Google Scholar
  179. Szent-Györgyi, A.: Observations on the function of peroxidase systems and the chemistry of the adrenal cortex. Description of a new carbohydrate derivative. Biochemic. J. 22, 1387–1409 (1928).Google Scholar
  180. Szent-Györgyi, A., and W. N. Haworth: “Hexuronic acid” (ascorbic acid) as the antiscorbutic factor. Nature (Lond.) 131, 24 (1933).CrossRefGoogle Scholar
  181. Tegethoff, B.: Zur papierchromatographischen Identifizierung von Vitamin C in pflanzlichen Substanzen. Z. Naturforsch. 8b, 374–376 (1953).Google Scholar
  182. Terenteva, E. L.: The chemical composition of ascorbigen. Biochimija 18, 296–301 (1953).Google Scholar
  183. Chem, Abstr. 48, 761.Google Scholar
  184. Thornton, N. C.: Carbon dioxide storage. X. The effect of carbon dioxide on the ascorbic acid content, respiration, and pH of asparagus tissue. Contrib. Boyce Thompson Inst. 9, 137–148 (1937).Google Scholar
  185. Carbon dioxide storage. XI. The effect of carbon dioxide on the ascorbic acid (vitamin C) content of some fruits and vegetables. Proc. Amer. Soc. Horti-cult. Sci. (for 1937) 35, 200–201 (1938).Google Scholar
  186. Carbon dioxide storage. XIV. The influence of carbon dioxide, oxygen, and ethylene on the vitamin C content of ripening bananas. Contrib. Boyce Thompson Inst. 13, 201–220 (1943).Google Scholar
  187. Tombesi, L., e S. Fortini: Intensità fotosintetica e respiratoria, glutatione ridotto, acido ascorbico e attività catalasica in fun-zione del regime idrico. (With an Engl, summary.) Ann. Sper. Agraria 6, 461–479 (1952).Google Scholar
  188. Tombesi, L., A. Baroccio, T. Cervigni, S. Fortini, M. Tarantola e M. E. Venezian: Attività ossidasica, catalasica, carboanidrasica, perossidasica e contenuto in glutatione ridotto ed acido ascorbico nel corso della maturazione di frutti e semi. I. (With an Engl. summary.) Ann. Sper. Agraria 6, 857–874 (1952).Google Scholar
  189. Tonzig, S., e F. Trezzi: Ricerche sulla fisiologia dell’acido ascorbico. I.–IV. (With Engl. summaries.) Nuovo Giorn. bot. ital. 57, 468–497, 515–534, 535–548, 549–563 (1950).CrossRefGoogle Scholar
  190. Truscott, J. H. L., W. M. Johnstone, T. G. H. Drake, J. R. van Haarlem and C. L. Thomson: A survey of the ascorbic acid content of fruits, vegetables and some native plants grown in Ontario, Canada. Ottawa: Dept. of N-tl. Health and Welfare [abt. 1946].Google Scholar
  191. Tuba, J., G. Hunter and J. A. Osborne, On staining for vitamin C in tissues. Canad. J. Res., Sect. C 24, 182–187 (1946b).Google Scholar
  192. Tuba, J., G. Hunter and H. R. Steele: On the specificity of dye titration for ascorbic acid. Canad. J. Res., Sect. B 24, 37–45 (1946a).CrossRefGoogle Scholar
  193. Turner, J. F.: The metabolism of the apple during storage. Austral. J. Sci. Res., Ser. B 2, 138–153 (1949).Google Scholar
  194. Udenfriend, S., C. T. Clark, J. Axelrod and B. B. Brodie: Ascorbic acid in aromatic hydroxylation. I.–II. J. of Biol. Chem. 208, 731–739, 741–750 (1954).Google Scholar
  195. Vinokurov, S. L, i G. Y. Kaznachey: On stimulation of the biosynthesis of ascorbic acid in injured potato tuber. (With an Engl. summary.) Biochimija 12, 350–355 (1947).Google Scholar
  196. Vinson, C. G., and F. B. Cross: Vitamin C content of persimmon leaves and fruits. Science (Lancaster, Pa.) 96, 430–431 (1942).Google Scholar
  197. Virtanen, A. I.: On the role of substances present in the seeds and arising in them during germination in the growth of plants. Experientia (Basel) 5, 313–317 (1949).CrossRefGoogle Scholar
  198. Virtanen, A. L, u. S. Saubert, V. Hausen: Über die Bedeutung der das Redoxpotential erniedrigenden Stoffe für das Wachstum der Pflanze. Z. Pflanzenernähr., Düng. u. Bodenkde 45, 11–22 (1949).CrossRefGoogle Scholar
  199. Dependence of nitrate reduction in green plants on reducing substances. Acta chem. scand. (Copenh.) 5, 638–642 (1951).Google Scholar
  200. Walzel, G.: Vitamin C in Cuscuta. Protoplasma 41, 260–262 (1952).CrossRefGoogle Scholar
  201. Wasiuta, M.: Über Vitamin C in der Pflanze. Österr. bot. Z. 96, 201–220 (1949).CrossRefGoogle Scholar
  202. Weber, F.: Frühtreiben und Vitamin C-Gehalt. Protoplasma 34, 317–319 (1940).CrossRefGoogle Scholar
  203. Impatiens-Nektar. Phyton (Horn, N.-Oe.) 3, 110–111 (1951).Google Scholar
  204. Whatley, F. R., M. B. Allen and D. I. Arnon: Photosynthetic phosphorylation as an anaerobic process. Biochim. et Biophysica Acta 16, 605–606 (1955).CrossRefGoogle Scholar
  205. Willstaedt, H.: Über den Vitamingehalt einiger eßbarer Pilze. Svensk kem. Tidskr. 53, 23–28 (1941).Google Scholar
  206. Winter, E.: Ascorbinsäure-Synthese in Gewebeschnitten. Planta (Berl.) 41, 52–58 (1952).CrossRefGoogle Scholar
  207. Wokes, F., and R. Melville: Vitamin C in the walnut (Juglans regia). Biochemic. J. 43, 585–592 (1948).Google Scholar
  208. Wokes, F., J. G. Organ, J. Duncan and F. C. Jacoby: Apparent vitamin C in foods. Biochemic. J. 37, 695–702 (1943).Google Scholar
  209. Wood, J. G.: Nitrogen metabolism of higher plants. Annual Rev. Plant Physiol. 4, 1–22 (1953).CrossRefGoogle Scholar
  210. Wood, J. G., D. H. Cruickshank and R. H. Kuchel: The metabolism of starving leaves. I.–III. Austral. J. Exper. Biol. a. Med. Sci. 21, 37–53 (1943).CrossRefGoogle Scholar
  211. Zepkova, G. A,: Concentration of vitamin C in certain plant species of Central Asia. C. r. Acad. Sci. URSS. 48, 655–658 (1945).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Börje Åberg

There are no affiliations available

Personalised recommendations