Skip to main content

Abstract

The connection between the type of diet and incidence of scurvy was early recognized, but it was not before the notion of accessory food factors, or vitamins, had been clearly formulated in 1912 (G. Hopkins, C. Funk) and a good test object for the antiscorbutic factor had been found in the guinea pig that serious attempts to isolate this factor (vitamin C. Drummond 1920) could begin. Among the early workers in this field S. S. Zilva and J. Tillmans should be specially mentioned. The decisive step was taken by A. Szent-Györgyi (1928), however, who isolated a strongly reducing substance of the molecular formula C6H8O6 from adrenal cortex, from oranges and from cabbage. This “hexuronic acid” easily reduced indicators like 2,6-dichlorophenol-indophenol which had earlier been used by Zilva and by Tillmans for studying the reducing substances usually associated with the antiscorbutic factor of plant materials. That this association was not absolute had ealier been a serious obstacle for further progress, but now it soon became clear that the vitamin C could be reversibly oxidized without loss of the antiscorbutic activity (Tillmans), and that hexuronic acid was in fact identical with the reduced form of this factor. The new name “ascorbic acid” was then coined (Szent-Györgyi and Haworth 1933), and the following terminology adopted:

$${\rm{Vitamin}}\;{\rm{C}} = {\rm{ascorbic}}\;{\rm{acid}} + {\rm{dehydroascorbic}}\;{\rm{acid}}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Åberg, B.: Effects of light and temperature on the ascorbic acid content of green plants. Kungl. Lantbrukshögsk. Ann. (Uppsala) 13, 239–273 (1946).

    Google Scholar 

  • Changes in the ascorbic acid content of darkened leaves as influenced by temperature, sucrose application, and severing from the plant. Physiol. Plantarum (Copenh.) 2, 164–183 (1949).

    Google Scholar 

  • On the effect of different sugars upon the ascorbic acid content of detached leaves. Kungl. Lantbrukshögsk. Ann. (Uppsala) 20, 125–138 (1953).

    Google Scholar 

  • Åberg, B., and I. Ekdahl: Effects of nitrogen fertilization on the ascorbic acid content of green plants. Physiol. Plantarum (Copenh.) 1, 290–329 (1948).

    Article  Google Scholar 

  • Algéus, S.: Untersuchungen über die Ernährungsphysiologie der Chloro-phyceen. Bot. Not. (Lund) 1946, 129–280. (Also: Diss., Lund.)

    Google Scholar 

  • Allison, R. M., and C. M. Driver: The effect of variety, storage and locality on the ascorbic acid content of the potato tuber. J. Sci. Food a. Agricult. 4, 386–396 (1953).

    Article  CAS  Google Scholar 

  • Arcus, C. L., and S. S. Zilva: The photochemical decomposition of l-ascorbic acid. II. Biochemic. J. 34, 61–66 (1940).

    CAS  Google Scholar 

  • Arkon, D. I., F. R. Whatley and M. B. Allen: Vitamin K as a cofactor of photosynthetic phosphorylation. Biochim. et Biophysica Acta 16, 607–608 (1955).

    Article  Google Scholar 

  • Asenjo, C. F., and A. R. F. de Guzmán: The high ascorbic acid content of the West Indian cherry. Science (Lancaster, Pa.) 103, 219 (1946).

    CAS  Google Scholar 

  • Asselbergs, E. A. M., and F. J. Francis: Studies on the formation of vitamin C in slices of potato tissue. Canad. J. Bot. 30, 665–673 (1952).

    Article  CAS  Google Scholar 

  • Ball, E. G.: Studies on oxidation-reduction. XXIII. Ascorbic acid. J. of Biol. Chem. 118, 219–239 (1937).

    CAS  Google Scholar 

  • Barker, J.: The ascorbic acid content of potato tubers. I. New Phytologist 49, 11–22 (1950).

    Article  CAS  Google Scholar 

  • Barker, J., and L. W. Mapson: The ascorbic acid content of potato tubers. II.–III. New Phytologist 49, 283–303 (1950); 51, 90–115 (1952).

    Article  CAS  Google Scholar 

  • Beevers, H.: The oxidation of reduced diphosphopyridine nucleotide by an ascorbate system from cucumber. Plant Physiol. 29, 265–269 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Bezssonoff, N., et M. Woloszyn: Sur la mise en évidence, dans les tissus, de la forme réversible, demi-oxydée, de la vitamine C. C. r. Soc. Biol. Paris 132, 538–540 (1939).

    CAS  Google Scholar 

  • Bonetti, D.: Osservazioni preliminari sopra il ritmo diurno del rapporto acido ascorbico ridotto/acido ascorbico totale nelle foglie. Boll. Soc. ital. Biol. sper. 25, 337–339 (1949).

    CAS  Google Scholar 

  • Brown, G. B.: The ascorbic acid content of tomatoes as related to illumination. Proc. Amer. Soc. Horticult. Sci. 65, 342–348 (1955).

    CAS  Google Scholar 

  • Busing, K.-H., u. F. Peters: Über die Ascorbinsäurebildung des B. prodigiosus aus Xylose Biochem. Z. 304, 134–136 (1940).

    CAS  Google Scholar 

  • Bukatsch, F.: Über den Askorbinsäuregehalt der Coniferennadeln. Vitamine u. Hormone 4, 192–207 (1943).

    CAS  Google Scholar 

  • Ascorbinsäuregehalt und Atmungsintensität. Phyton (Horn, N.-Oe.) 4, 35–45 (1952).

    Google Scholar 

  • Burns, J. J., E. H. Mosbach, S. Schulenberg and J. Reichenthal: Studies on the incorporation of C14 administered as l-sorbose into l-ascorbic acid and d-glucose in rats. J. of Biol. Chem. 214, 507–514 (1955).

    CAS  Google Scholar 

  • Catel, W., W. Schuphan, L. Barth, H. Kathen u. I. Weinmann: Tier- und human-physiologische Untersuchungen über die Vitamin C-Wirksamkeit von Apfelsorten verschiedener Ascorbinsäuregehalte. Biochem. Z. 325, 109–122 (1954).

    PubMed  CAS  Google Scholar 

  • Chen, S. D., and C. Schuck: Diketogulonic acid, dehydroascorbic acid, and ascorbic acid content of four fruits. Food Res. 16, 507–509 (1951).

    CAS  Google Scholar 

  • Chen, Y.-T., F. A. Isherwood and L. W. Mapson: Quantitative estimation of ascorbic acid and related substances in biological extracts by separation on a paper chromatogram. Biochemic. J. 55, 821–823 (1953).

    CAS  Google Scholar 

  • Daglish, C.: The occurrence of ascorbic acid in the walnut (Juglans regia). Biochemic. J. 49, 639–642 (1951).

    CAS  Google Scholar 

  • Dann, W. J., and G. H. Satterfield: Estimation of the vitamins. Biol. Symp. (Lancaster, Pa.) 12, (1947).

    Google Scholar 

  • Drummond, J. C: The nomenclature of the so-called accessory food factors (vitamins). Biochemic. J. 14, 660 (1920).

    CAS  Google Scholar 

  • Eddy, B. P., and M. Ingram: Interactions between ascorbic acid and bacteria. Bacter. Rev. 17, 93–107 (1953).

    CAS  Google Scholar 

  • Eddy, B. P., M. Ingram and L. W. Mapson: Reduction of dehydroascorbic acid by bacteria. I.–II. Biochemic. J. 50, 601–605; 51, 375–379 (1952).

    CAS  Google Scholar 

  • Egle, K.: Über die Wirkung von Vitamin C auf die Kohlensäureassimilation und die Atmung submerser Wasserpflanzen. Beitr. Biol. Pflanz. 28, 145–159 (1951).

    Google Scholar 

  • Ekman, B.: Oxydation zyklischer Verbindungen durch Vitamin C. Acta physiol. scand. (Stockh.) 8, Suppl. 22, 1–196 (1944).

    Google Scholar 

  • Emilsson, B.: Studies on the rest period and dormant period in the potato tuber. Acta agricult. suecana (Stockh.) 3, 189–284 (1949).

    CAS  Google Scholar 

  • Erkama, J.: Colorimetric determination of vitamin C with 2,6-dichlorophenol-indophenol. Suom. Kemist. A 19, 21–25 (1946).

    Google Scholar 

  • Euler, H. V., u. H. Hasselquist: Reduktone. Stuttgart: Ferdinand Enke 1950.

    Google Scholar 

  • Fedorova, V. S.: Influence of geographical conditions and environment upon vitamin accumulation by certain wild plant species of Siberia. C. r. Acad. Sci. URSS. 53, 361–364 (1946).

    CAS  Google Scholar 

  • Ferres, H. M., and W. D. Brown: The effects of mineral nutrients on the concentration of ascorbic acid in legumes and two leaf vegetables. Austral. J. Exper. Biol. a. Med. Sci. 24, 111–119 (1946).

    Article  CAS  Google Scholar 

  • Franke, W.: Über die Biosynthese des Vitamins C. I. Die Beziehungen zwischen Vitamin C und der Atmung. Planta (Berl.) 44, 437–458 (1954).

    Article  CAS  Google Scholar 

  • Über die Biosynthese des Vitamins C. II. Zur Biochemie und Physiologie der Vitamin C-Synthese. Planta (Berl.) 45, 166–197 (1955a).

    Google Scholar 

  • Ascorbinsäure. In: Moderne Methoden der Pflanzenanalyse, herausgeg. von K. Paech u. M. V. Tracey, Bd. 2, S. 95–112. 1955b.

    Google Scholar 

  • French, R. B., and O. D. Abbott: Levels of carotene and ascorbic acid in Florida-grown foods. Florida Agricult. Exper. Stat. Bull. 1948, No 444, 1–21.

    Google Scholar 

  • Galli, A.: Über die Bildung der Ascorbinsäure und ihre Stellung im Stoffwechsel von Aspergillus niger. Ber. Schweiz. bot. Ges. 56, 113–174 (1946).

    CAS  Google Scholar 

  • Géro, E.: Progrès récents dans le dosage chimique de l’acide ascorbique. Ann. Nutrit. Aliment. 2, 159–178 (1948).

    Google Scholar 

  • Etude critique de quelques méthodes de dosage de l’acide ascorbique. Mise au point d’une nouvelle technique de dosage de l’acide ascorbique. Bull. Soc. Chim. biol. Paris 31, 817–824, 825–838 (1949).

    Google Scholar 

  • Giroud, A.: L’acide ascorbique dans la cellule et les tissus. Protoplasma-Monogr. 16, 1–187 (1938).

    Google Scholar 

  • Glick, D.: Die quantitative Verteilung der Ascorbinsäure im wachsenden Gerstenembryo. Z. physiol. Chem. 245, 211–216 (1937).

    Article  CAS  Google Scholar 

  • Grant, E. P.: Apples as a source of vitamin C. Sci. Agricult. 27, 162–164 (1947).

    CAS  Google Scholar 

  • Günther, E., E. F. Heeger u. C. Rosenthal: Der Vitamin-C-Gehalt der in Deutschland hauptsächlich angebauten Heil- und Gewürzpflanzen in kritisch-experimenteller Betrachtung. Pharmazie 7, 24–50 (1952).

    PubMed  Google Scholar 

  • Guthrie, J. D.: Factors influencing the development of ascorbic acid and glutathione in potato tubers following treatment with ethylene chlorhydrin. Contrib. Boyce Thompson Inst. 9, 17–39 (1937).

    CAS  Google Scholar 

  • György, P.: Vitamin methods, Bd. 1. New York: Acad. Press Inc. 1950.

    Google Scholar 

  • Hägen, U.: Beobachtungen zur Wanderung der Ascorbinsäure im Assimilatstrom. Phyton (Horn, N.-Oe.) 4, 322–324 (1953a).

    Google Scholar 

  • Über die Tagesrhythmik des Vitamin C-Gehaltes in Blättern. Phyton (Horn, N.-Oe.) 5, 1–15 (1953b).

    Google Scholar 

  • Hamner, K. C.: Minor elements and vitamin content of plants. Soil Sci. 60, 165–171 (1945).

    Article  CAS  Google Scholar 

  • Harris, L. J., and M. Olliver: Vitamin methods. 3. The reliability of the method for estimating vitamin C by titration against 2,6-dichlorophenol-indophenol. Biochemic. J. 36, 155–182 (1942).

    CAS  Google Scholar 

  • Harris, L. J., and S. N. Ray: Specificity of hexuronic (ascorbic) acid as antiscorbutic factor. Biochemic. J. 27, 580–589 (1933).

    CAS  Google Scholar 

  • Haworth, W. N., and E. L. Hirst: The chemistry of ascorbic acid (vitamin C) and its analogues. Erg. Vitamin- u. Hormonforsch. 2, 160–191 (1939).

    CAS  Google Scholar 

  • Hendley, D. D., and E. E. Conn: Enzymatic reduction and oxidation of glutathione by illuminated chloroplasts. Arch. of Biochem. a. Biophysics 46, 454–464 (1953).

    Article  CAS  Google Scholar 

  • Hewitt, E. J., S. C. Agarwala and E. W. Jones: Effect of molybdenum status on the ascorbic acid content of plants in sand culture. Nature (Lond.) 166, 1119–1120 (1950).

    Article  CAS  Google Scholar 

  • Hewston, E. M., M. Fisher and E. Orent-Keiles: Comparison of the 2,6-dichlorophenol-indophenol and 2,4-dinitrophenylhydrazine methods with the Crampton bioassay for determining vitamin C valus in foods. U. S. Dept. Agricult. Techn. Bull. 1951, No 1023, 1–30.

    Google Scholar 

  • Hirst, E. L.: The structure and synthesis of vitamin C (ascorbic acid) and its analogues. Fortschr. Chem. organ. Naturstoffe 2, 132–159 (1939).

    CAS  Google Scholar 

  • Hivon, K.J., D. M. Doty and F. W. Quackenbush: Ascorbic acid and ascorbic acid oxidizing enzymes of green bean plants deficient in manganese. Plant Physiol. 26, 832–835 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, H. H., and C. G. King: The conversion of glucose-6-C14 to ascorbic acid by the albino rat. J. of Biol. Chem. 200, 125–128 (1953a).

    CAS  Google Scholar 

  • Glucuronic acid as a precursor of ascorbic acid in the albino rat. J. of Biol. Chem. 205, 815–821 (1953b).

    Google Scholar 

  • Huelin, F. E.: Investigations on the stability and determination of dehydroascorbic acid. Austral. J. Sci. Res. B 2, 346–354 (1949).

    Google Scholar 

  • Studies on the anaerobic decomposition of ascorbic acid. Food Res. 18, 633–639 (1953).

    Google Scholar 

  • Hunter, A. S., W. C. Kelly and G. F. Somers: Effects of variations in soil moisture tension upon the ascorbic acid and carotene content of turnip greens. Agronomy J. 42, 96–99 (1950).

    Article  CAS  Google Scholar 

  • Isherwood, F. A., Y. T. Chen and L. W. Mapson: Synthesis of l-ascorbic acid in plants and animals. Biochemic. J. 56, 1–15 (1954a).

    CAS  Google Scholar 

  • Isolation of d-glyceric acid from cress seedlings and its relationship to the synthesis of l-ascorbic acid. Biochemic. J. 56, 15–21 (1954b).

    Google Scholar 

  • Ishihara, Y., S. Umemoto and Y. Matsubara: Vitamin C contents of marine algae in Hokkaido. Mem. Fac. Agricult. Hokkaido Univ. 1, 83–86 (1951). Chem. Abstr. 47, 7611.

    CAS  Google Scholar 

  • Jackel, S. S., E. H. Mosbach and C. G. King: Ion exchange separation of ascorbic acid and isolation of the 2,4-dinitrophenylosazone. Arch. of Biochem. a. Biophysics 31, 442–449 (1951).

    Article  CAS  Google Scholar 

  • Johansson, E.: Determinations of ascorbic acid content of fruits and fruit products, some vegetables, and other plants. (Swedish with an Engl. summary.) Medd. Statens Trädgårdsförsök (Sweden) 4, 1–53 (1939).

    Google Scholar 

  • Jones, R. W., and K. C. Hamner: The intracellular distribution of ascorbic acid in turnip leaves. Plant Physiol. 28, 314–316 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Kakukawa, T.: Weitere Untersuchungen über den Askorbinsäure-Gehalt der Krautpflanzen, mit besonderer Berücksichtigung der Schattenpflanzen. Sci. Rep. Tôhoku Imp. Univ., Ser. IV, 17, 289–300 (1943a).

    Google Scholar 

  • Schwankungen des Gehalts an Askorbinsäure und Kohlenhydraten in Pflanzenblättern während der verschiedenen Tageszeiten. Sci. Rep. Tôhoku Imp. Univ., Ser. IV 17, 301–307 (1943b).

    Google Scholar 

  • Kellermann, H.: Studien über den Vitamin C-Gehalt der Pflanzen. Phyton (Horn, N.-Oe.) 1, 178–179 (1949).

    Google Scholar 

  • Kenyon, J., and N. Munro: The isolation and some properties of dehydro-l-ascorbic acid. J. Chem. Soc. (Lond.) 1948 I, 158–161.

    Article  Google Scholar 

  • Kern, M., and E. Racker: Activation of a DPNH oxidase by an oxidation product of ascorbic acid. Arch. of Biochem. a. Biophysics 48, 235–236 (1954).

    Article  CAS  Google Scholar 

  • Klose, A. A., J. Peat and H. L. Fevold: Vitamin C content of walnuts (Persian) during growth and development. Plant Physiol. 23, 133–141 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Koizumi, T., and T. Kakukawa: On the vitamin-C (ascorbic acid) content of herbaceous plants and marine algae, considering factors influencing it. Sci. Rep. Tôhoku Imp. Univ., Ser. IV 15, 105–120 (1940).

    CAS  Google Scholar 

  • Kröner, W., u. W. Völksen: Über die Verteilung der Ascorbinsäure in einigen pflanzlichen Speicherorganen. Biochem. Z. 314, 409–421 (1943).

    Google Scholar 

  • Lamden, M. P., and R. S. Harris: Browning of ascorbic acid in pure solutions. Food Res. 15, 79–89 (1950).

    PubMed  CAS  Google Scholar 

  • Lawrence, J. M.: Formation of reducing substances in pea seeds. Arch. of Biochem. 27, 1–5 (1950).

    CAS  Google Scholar 

  • Lecat, P.: Répartition et variations du système ascorbique chez les végétaux. Plant a. Soil 3, 267–308 (1951).

    Article  CAS  Google Scholar 

  • Lona, F., e E. Porzio-Giovanola: Ricerche sulla fisiologia dell’acido ascorbico. VII. Contenuto in acido ascorbico delie piante in relazione al fattore termoperiodico. (With an Engl. summary.) Nuovo Giorn. bot. ital. 58, 462–474 (1951).

    Article  CAS  Google Scholar 

  • Lucas, R. E.: Effect of copper fertilization on carotene, ascorbic acid, protein, and copper contents of plants grown on organic soils. Soil Sci. 65, 461–469 (1948).

    Article  CAS  Google Scholar 

  • Luger, H.: Der Einfluß der Askorbinsäure auf die Assimilation und Atmung höherer Pflanzen. Protoplasma 44, 212–238 (1954).

    Article  Google Scholar 

  • Lugg, J. W. H., and R. A. Weller: Germinating seeds as a source of vitamin C in human nutrition. I.–II. Austral. J. Exper. Biol. a. Med. Sci. 21, 111–114, 211–214 (1943).

    Article  CAS  Google Scholar 

  • Lunde, G.: Vitamine in frischen und konservierten Nahrungsmitteln. Berlin: Springer 1940.

    Book  Google Scholar 

  • L’Vov, S. D., i L. A. Altukhova: Vitamin C and its relation to frost resistance of winter wheats. Dokl. Akad. Nauk SSSR. 80, 113–116 (1951). Chem. Abstr. 49, 11094.

    PubMed  Google Scholar 

  • Lwoff, S., G. K. Guzwitsch i A. Pantelejeff: On the functional role of vitamin C in plants. (Russian with an Engl. summary.) Utschenie Sapiski GLU 75, 151–200 (1945).

    Google Scholar 

  • Lyon, C. B., and K. C. Beeson: Influence of toxic concentrations of micro-nutrient elements in the nutrient medium on vitamin content of turnips and tomatoes. Bot. Gaz. 109, 506–520 (1948).

    Article  CAS  Google Scholar 

  • Mack, G. L., and D. K. Tressler: Vitamin C in vegetables. VI. A critical investigation of the Tillmans method for the determination of ascorbic acid. J. of Biol. Chem. 118, 735–742 (1937).

    CAS  Google Scholar 

  • Mairold, F., u. F. Weber: Notiz über Cephalanthera-Albinos. Protoplasma 39, 275–277 (1950).

    Article  Google Scholar 

  • Mapson, L. W.: Function of ascorbic acid in plants. Vitamins a. Hormones 11, 1–28 (1953).

    Article  CAS  Google Scholar 

  • Biochemical systems (involving ascorbic acid). In Sebrell and Harris, The Vitamins, vol. 1, p. 211–242. 1954.

    Google Scholar 

  • The biosynthesis of ascorbic acid. Vitamins a. Hormones 13, 71–100 (1955).

    Google Scholar 

  • Mapson, L. W., and E. M. Cruickshank: Effect of various salts on the synthesis of ascorbic acid and carotene in cress seedlings. Biochemic. J. 41, 197–205 (1947).

    CAS  Google Scholar 

  • Mapson, L. W., and M. Ingram: Observations on the use of Escherichia coli for the reduction and estimation of dehydroascorbic acid. Biochemic. J. 48, 551–559 (1951).

    CAS  Google Scholar 

  • Mapson, L. W., and F. A. Isherwood: Biological synthesis of ascorbic acid: the conversion of derivatives of d-galacturonic acid into l-ascorbic acid by plant extracts. Biochemic. J. 59, IX–X (1955).

    Google Scholar 

  • Mapson, L. W., F. A. Isherwood and Y. T. Chen: Biological synthesis of l-ascorbic acid: the conversion of l-galactono-γ-lactone into l-ascorbic acid by plant mitochondria. Biochemic. J. 56, 21–28 (1954).

    CAS  Google Scholar 

  • Marx, T., u. U. Sahm: Über den Einfluß von Mangan- und Bordüngungen auf den l-Ascorbinsäuregehalt der Tomaten. II. Z. Pflanzenernähr., Düng. u. Bodenkde 70, 58–65 (1955).

    Article  CAS  Google Scholar 

  • Mathot, H. J.: Factoren die de variatie van het vitamine C in de plant bepalen. Diss. Wageningen 1945.

    Google Scholar 

  • Medawara, M. R.: Notizen über Vitamin C in der Pflanze. Phyton (Horn, N.-Oe.) 2, 193–212 (1950).

    Google Scholar 

  • Metzner, H.: Die Reduktion wäßriger Silbernitratlösungen durch Chloroplasten und andere Zellbestandteile. Protoplasma 41, 129–167 (1952).

    Article  Google Scholar 

  • Mills, M. B., C. M. Damron and J. H. Roe: Ascorbic acid, dehydroascorbic acid, and diketogulonic acid. Analyt. Chem. 21, 707–709 (1949).

    Article  CAS  Google Scholar 

  • Mills, M. B., and J. H. Roe: A critical study of proposed modifications of the Roe and kuether method for the determination of ascorbic acid, with further contributions to the chemistry of this procedure. J. of Biol. Chem. 170, 159–164 (1947).

    CAS  Google Scholar 

  • Mitchell, L. C, and W. I. Patterson: The separation and identification of l-ascorbic, d-isoascorbic, and d-glucoascorbic acids by paper chromatography. J. Assoc. Offic. Agricult. Chem. 36, 1127–1130 (1953).

    CAS  Google Scholar 

  • Moldtmann, H. G.: Untersuchungen über den Ascorbinsäuregehalt der Pflanzen in seiner Abhängigkeit von inneren und äußeren Faktoren. Planta (Berl.) 30, 297–342 (1939).

    Article  CAS  Google Scholar 

  • Murneek, A. E., L. Maharg and S. H. Wittwer: Ascorbic acid (vitamin C) content of tomatoes and apples. Univ. Missouri Agricult. Exper. Stat., Res. Bull. 1954, No 568, 1–24.

    Google Scholar 

  • Murphy, E. F., and M. R, Covell: Tomatoes in Maine. Maine Agricult. Exper. Stat. Bull. 1951, No 489, 1–70.

    Google Scholar 

  • Mustard, M. J.: Ascorbic acid content of some miscellaneous tropical and subtropical plants and plant products. Food Res. 17, 31–35 (1952).

    CAS  Google Scholar 

  • Nagai, S.: Experimental studies on the reduction of silver nitrate by plant cell. II. Nature and responsibility of substances which cause the reduction. J. Inst. Polytechn. Osaka City Univ., Ser. D 2, 1–8 (1951).

    CAS  Google Scholar 

  • Nagai, S., and E. Ogata: Experimental studies on the reduction of silver nitrate by plant cell. III. Further evidences on the role of ascorbic acid in the Molish reaction. IV. The reaction in etiolated seedlings. J. Inst. Polytechn. Osaka City Univ., Ser. D 3, 37–55 (1952).

    CAS  Google Scholar 

  • Nason, A., W. D. Wosilait and A. J. Terrell: The enzymatic oxidation of reduced pyridine nucleotides by an oxidation product of ascorbic acid. Arch. of Biochem. a. Biophysics 48, 233–235 (1954).

    Article  CAS  Google Scholar 

  • Neubauer, M.: Das Vitamin C in der Pflanze. Protoplasma 33, 345–370 (1939).

    Article  CAS  Google Scholar 

  • Newcomb, E. H.: Effect of auxin on ascorbic oxidase activity in tobacco pith cells. Proc. Soc. Exper. Biol. a. Med. 76, 504–509 (1951).

    CAS  Google Scholar 

  • Noggle, G. R.: The physiology of polyploidy in plants. 1. Review of the literature. Lloydia 9, 153–173 (1946).

    CAS  Google Scholar 

  • A chemical study of diploid and tetraploid rye. Lloydia 10, 19–37 (1947).

    Google Scholar 

  • Olliver, M.: Estimation (of ascorbic acid). In Sebrell and Harris, The Vitamins, vol. 1, p. 242–259. 1954.

    Google Scholar 

  • Owen, J. A., B. Iggo and D. B. Horn: Use of p-chloromercuri-benzoic acid in the determination of ascorbic acid in the presence of sulphydryl compounds. Nature (Lond.) 174, 701 (1954).

    Article  CAS  Google Scholar 

  • Paech, K.: Stoffwechsel organischer Verbindungen. II Fortschr. Bot. 15, 313–347 (1954).

    CAS  Google Scholar 

  • Pal, R. K., and N. M. Bose: A comparison of the antiscorbutic values of some common pulses and cereals in a sprouted condition. Ann. Biochem. a. Exper. Med. (Calcutta) 5, 31–32 (1945).

    CAS  Google Scholar 

  • Panse, T. B., and A. Sreenivasan: Vitamin C in drumstick leaf. Nature (Lond.) 155, 518 (1945).

    Article  Google Scholar 

  • Penney, J. R., and S. S. Zilva: The isolation of barium and calcium diketo-l-gulonates and the biological significance of 2:3-diketo-l-gulonic acid. Biochemic. J. 39, 1–4 (1945a).

    CAS  Google Scholar 

  • Interfering substances in the Roe and Kuether method for the determination of ascorbic acid. Biochemic. J. 39, 392–397 (1945b).

    Google Scholar 

  • Popovskaya, E. M.: Formation and movement of ascorbic acid in plants. (Russian.) Bio-chimija 15, 249–255 (1950).

    CAS  Google Scholar 

  • Chem. Abstr. 44, 10063.

    Google Scholar 

  • Povolockaja, K. L.: Vitamin C in germinating seeds. C. r. Acad. Sci. URSS. 17, 35–38 (1937).

    Google Scholar 

  • Prochazka, Z.: Combined ascorbic acid. V.–VI. Chem. Listy 47, 1637–1642, 1643–1646 (1953).

    CAS  Google Scholar 

  • Chem. Abstr. 48, 4033.

    Google Scholar 

  • Prokoshev, S. M.: Traumatic formation of vitamin C in sliced potatoes. (Russian with an Engl. summary.) Biochimija 9, 36–54 (1944).

    CAS  Google Scholar 

  • Prokoshev, S. M., i. E. I. Dantsheva: Factors of ascorbic acid biosynthesis. (Russian with an Engl. summary.) Biochimija 11, 481–492 (1946).

    CAS  Google Scholar 

  • Prokoshev, S. M., i E. I. Petrochenko: Interrelation of protein and ascorbic acid in potato tubers. Dokl. Akad. Nauk SSSR. 61, 313–316 (1948).

    CAS  Google Scholar 

  • Chem. Abstr. 43, 279.

    Google Scholar 

  • Raadts, E.: Über den Einfluß der Askorbinsäure auf die Auxinaktivierung. Planta (Berl.) 36, 103–130 (1948).

    Article  Google Scholar 

  • Rabinowitch, E. I.: Photosynthesis, vol. I. New York: Interscience Publishers 1945.

    Google Scholar 

  • Reichstein, T., u. V. Demole: Übersicht über Chemie und biologische Wirkung der Ascorbinsäuregruppe (Vitamin C). Festschr. E. C. Barell, S. 107–138. Basel 1936.

    Google Scholar 

  • Reid, M. E.: Localization of ascorbic acid in the cowpea plant at different periods of development. Amer. J. Bot. 24, 445–447 (1937).

    Article  CAS  Google Scholar 

  • Relation of vitamin C to cell size in the growing region of the primary root of cowpea seedlings. Amer. J. Bot. 28, 410–415 (1941a).

    Google Scholar 

  • Metabolism of ascorbic acid in cowpea plants. Bull. Torrey Bot. Club 68, 359–371 (1941b).

    Google Scholar 

  • Relation of temperature to the ascorbic acid content of cowpea plants. Bull. Torrey Bot. Club 68, 519–530 (1941c).

    Google Scholar 

  • Interrelations of calcium and ascorbic acid to cell surfaces and intercellular substances and to physiological action. Physiologic. Rev. 23, 76–99 (1943).

    Google Scholar 

  • Robinson, W. B.: The effect of sunlight on the ascorbic acid content of strawberries. J. Agricult. Res. 78, 257–262 (1949).

    CAS  Google Scholar 

  • Roe, J. H.: Chemical determination of ascorbic, dehydroascorbic, and diketogulonic acids. Methods of Biochem. Anal. 1, 115–139 (1954).

    Article  CAS  Google Scholar 

  • Roe, J. H., M. B. Mills, M. J. Oesterling and C. M. Damron: The determination of diketo-l-gulonic acid, dehydro-l-ascorbic acid, and l-ascorbic acid in the same tissue extract by the 2,4-dinitrophenylhydrazine method. J. of Biol. Chem. 174, 201–208 (1948).

    CAS  Google Scholar 

  • Roe, J. H., and M. J. Oesterling: The determination of dehydroascorbic acid and ascorbic acid in plant tissues by the 2,4-dinitrophenylhydrazine method. J. of Biol. Chem. 152, 511–517 (1944).

    CAS  Google Scholar 

  • Rönnerstrand, S.: Untersuchungen über Oxydase, Peroxydase und Ascorbinsäure in einigen Meeresalgen. Diss. Lund 1943.

    Google Scholar 

  • Rosanova, M. A.: Seasonal variation in the accumulation of ascorbic acid in leaves and fruits of active and inactive species of wild roses. C. r. Acad. Sci. URSS. 53, 633–635 (1946).

    Google Scholar 

  • Rosenberg, H. R.: Chemistry and physiology of the vitamins. New York: Interscience Publishers, revised repr. 1945.

    Google Scholar 

  • Sabalitschka, t., u. I. Marggraff: Zur Bestimmung von Vitamin C. 7. Zur Annahme einer in Pflanzenmaterial an Eiweiß gebundenen, schwer nachweisbaren Ascorbinsäure. Pharmazie 3, 127–129 (1948).

    PubMed  CAS  Google Scholar 

  • Scherbakov, B. I.: The influence of light of various spectral regions on vitamin C Synthesis in plants. Dokl. Akad. Nauk SSSR. 66, 1149–1152 (1949).

    Google Scholar 

  • Chem. Abstr. 43, 8012.

    Google Scholar 

  • Scheunert, A., u. E. Theile: Ein Beitrag zur Kenntnis des Vitamin-C-Gehaltes in grünen Pflanzen unter besonderer Berücksichtigung des Gehaltes an Dehydroascorbinsäure. Pharmazie 7, 776–780 (1952).

    PubMed  CAS  Google Scholar 

  • Schmidt, H., u. H. Staudinger: Papierchromatographische Bestimmung von Ascorbinsäure und Dehydroascorbinsäure. Biochem. Z. 326, 343–349 (1955).

    PubMed  CAS  Google Scholar 

  • Schröderheim, J.: Untersuchungen über den Ascorbinsäuregehalt in Hagebutten. Lunds Univ. Årsskr., N. F., Avd. 2 37, 1–57 (1941).

    Google Scholar 

  • Schwarze, W. K., u. E. Günther: Vergleichende Untersuchungen zur Vitamin-C-Bestimmung in Pflanzenmaterial. Biochem. Z. 319, 139–154 (1948).

    CAS  Google Scholar 

  • Seybold, A., u. H. Mehner: Über den Gehalt von Vitamin C in Pflanzen. Sitzgsber. Heidelberg. Akad. Wiss., Math.-naturwiss. Kl. 1948 (10), 1–132 (215–346).

    Google Scholar 

  • Shaw, A. C., and L. C. Pascoe: Formation and distribution of vitamin C in the radicle and cotyledon of the broad bean (Vicia faba). Nature (Lond.) 164, 624 (1949).

    Article  CAS  Google Scholar 

  • Shaw, A. C, and R. T. Tatchell: Distribution of vitamin C in the tip of the broad bean radicle. Nature (Lond.) 167, 116–117 (1951).

    Article  CAS  Google Scholar 

  • Shinke, N., and T. Hiraoka: Vitamin C content of some wild plants. Seiri Seitai 1, 61–66 (1947).

    CAS  Google Scholar 

  • Chem. Abstr. 45, 8087.

    Google Scholar 

  • Sideris, C. P., and H. Y. Young: Effects of iron on chlorophyllous pigments, ascorbic acid, acidity and carbohydrates of Ananas comosus (L.) Merr., supplied with nitrate or ammonium salts. Plant Physiol. 19, 52–75 (1944).

    Article  PubMed  CAS  Google Scholar 

  • Smith, F.: Chemistry (of ascorbic acid). In Sebrell and Harris, The Vitamins, vol. 1, p. 180–208. 1954.

    Google Scholar 

  • Smith, F. G.: Ascorbic acid formation in potato tuber slices. Plant Physiol. 27, 736–744 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Snow, G. A., and S. S. Zilva: A critical examination of Lugg’s method for the determination of l-ascorbic acid. II. Biochemic. J. 38, 458–467 (1944).

    CAS  Google Scholar 

  • Somers, G. F., and K. C. Beeson: The influence of climate and fertilizer practices upon the vitamin and mineral content of vegetables. Adv. Food Res. 1, 291–324 (1948).

    Article  CAS  Google Scholar 

  • Somers, G. F., and W. C. Kelly: Ascorbic acid and dry matter accumulation in turnip and broccoli leaf discs after infiltration with inorganic salts, organic acids, and some enzyme inhibitors. Plant Physiol. 26, 90–109 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Somers, G. F., W. C. Kelly and K. C. Hamner: Changes in ascorbic acid content of turnip-leaf discs as influenced by light, temperature, and carbon dioxide concentration. Arch. of Biochem. 18, 59–67 (1948).

    CAS  Google Scholar 

  • Influence of nitrate supply upon the ascorbic acid content of tomatoes. Amer. J. Bot. 38, 472–475 (1951).

    Google Scholar 

  • Somers, G. F., W. C. Kelly, E. J. Thacker and A. M. Redder: The occurrence of substances which interfere with the determination of ascorbic acid in antho-cyanin-containing plant products. Food Res. 16, 62–70 (1951).

    PubMed  CAS  Google Scholar 

  • Sosa-Bourdouil, C.: Répartition de l’acide ascorbique dans les organes floraux au cours du développement. C. r. Acad. Sci. Paris 212, 1000–1002 (1941).

    CAS  Google Scholar 

  • Répartition de l’acide ascorbique dans quelques fougères du Muséum. Bull. Mus. nat. Hist. natur., Sér. II 14, 477–479 (1942).

    Google Scholar 

  • Stocker, O.: Tiroler Sanddorn (Hippophae rhamnoides L.) als Vitamin C-Höchstleistungspflanze. Züchter 19, 9–13 (1948).

    Google Scholar 

  • Strohecker, R., W. Heimann u. F. Matt: Zur quantitativen Bestimmung der Ascorbinsäure auf papierchromatographischem Weg. Z. anal. Chem. 145, 401–417 (1955).

    Article  CAS  Google Scholar 

  • Sugawara, T.: Studies on the formation of ascorbic acid (vitamin C) in plants. III.–IV. Jap. J. Bot. 11, 147–165, 343–356 (1941).

    CAS  Google Scholar 

  • Studies on the formation of ascorbic acid (vitamin C) in plants. VI. Relation among formation of ascorbic acid, development of chlorophyll, and beginning of photosynthesis. Jap. J. Bot. 15, 10–14 (1955).

    Google Scholar 

  • Sullivan, M. X., and H. C. N. Clark: A highly specific procedure for ascorbic acid. Federat. Proc. 12, 277 (1953).

    Google Scholar 

  • Sumtsov, B. M.: Properties of bound ascorbic acid. Biochimija 13, 492–500 (1948).

    CAS  Google Scholar 

  • Chem. Abstr. 43, 3079.

    Google Scholar 

  • Szent-Györgyi, A.: Observations on the function of peroxidase systems and the chemistry of the adrenal cortex. Description of a new carbohydrate derivative. Biochemic. J. 22, 1387–1409 (1928).

    Google Scholar 

  • Szent-Györgyi, A., and W. N. Haworth: “Hexuronic acid” (ascorbic acid) as the antiscorbutic factor. Nature (Lond.) 131, 24 (1933).

    Article  Google Scholar 

  • Tegethoff, B.: Zur papierchromatographischen Identifizierung von Vitamin C in pflanzlichen Substanzen. Z. Naturforsch. 8b, 374–376 (1953).

    CAS  Google Scholar 

  • Terenteva, E. L.: The chemical composition of ascorbigen. Biochimija 18, 296–301 (1953).

    CAS  Google Scholar 

  • Chem, Abstr. 48, 761.

    Google Scholar 

  • Thornton, N. C.: Carbon dioxide storage. X. The effect of carbon dioxide on the ascorbic acid content, respiration, and pH of asparagus tissue. Contrib. Boyce Thompson Inst. 9, 137–148 (1937).

    CAS  Google Scholar 

  • Carbon dioxide storage. XI. The effect of carbon dioxide on the ascorbic acid (vitamin C) content of some fruits and vegetables. Proc. Amer. Soc. Horti-cult. Sci. (for 1937) 35, 200–201 (1938).

    Google Scholar 

  • Carbon dioxide storage. XIV. The influence of carbon dioxide, oxygen, and ethylene on the vitamin C content of ripening bananas. Contrib. Boyce Thompson Inst. 13, 201–220 (1943).

    Google Scholar 

  • Tombesi, L., e S. Fortini: Intensità fotosintetica e respiratoria, glutatione ridotto, acido ascorbico e attività catalasica in fun-zione del regime idrico. (With an Engl, summary.) Ann. Sper. Agraria 6, 461–479 (1952).

    CAS  Google Scholar 

  • Tombesi, L., A. Baroccio, T. Cervigni, S. Fortini, M. Tarantola e M. E. Venezian: Attività ossidasica, catalasica, carboanidrasica, perossidasica e contenuto in glutatione ridotto ed acido ascorbico nel corso della maturazione di frutti e semi. I. (With an Engl. summary.) Ann. Sper. Agraria 6, 857–874 (1952).

    CAS  Google Scholar 

  • Tonzig, S., e F. Trezzi: Ricerche sulla fisiologia dell’acido ascorbico. I.–IV. (With Engl. summaries.) Nuovo Giorn. bot. ital. 57, 468–497, 515–534, 535–548, 549–563 (1950).

    Article  CAS  Google Scholar 

  • Truscott, J. H. L., W. M. Johnstone, T. G. H. Drake, J. R. van Haarlem and C. L. Thomson: A survey of the ascorbic acid content of fruits, vegetables and some native plants grown in Ontario, Canada. Ottawa: Dept. of N-tl. Health and Welfare [abt. 1946].

    Google Scholar 

  • Tuba, J., G. Hunter and J. A. Osborne, On staining for vitamin C in tissues. Canad. J. Res., Sect. C 24, 182–187 (1946b).

    Google Scholar 

  • Tuba, J., G. Hunter and H. R. Steele: On the specificity of dye titration for ascorbic acid. Canad. J. Res., Sect. B 24, 37–45 (1946a).

    Article  CAS  Google Scholar 

  • Turner, J. F.: The metabolism of the apple during storage. Austral. J. Sci. Res., Ser. B 2, 138–153 (1949).

    Google Scholar 

  • Udenfriend, S., C. T. Clark, J. Axelrod and B. B. Brodie: Ascorbic acid in aromatic hydroxylation. I.–II. J. of Biol. Chem. 208, 731–739, 741–750 (1954).

    CAS  Google Scholar 

  • Vinokurov, S. L, i G. Y. Kaznachey: On stimulation of the biosynthesis of ascorbic acid in injured potato tuber. (With an Engl. summary.) Biochimija 12, 350–355 (1947).

    CAS  Google Scholar 

  • Vinson, C. G., and F. B. Cross: Vitamin C content of persimmon leaves and fruits. Science (Lancaster, Pa.) 96, 430–431 (1942).

    CAS  Google Scholar 

  • Virtanen, A. I.: On the role of substances present in the seeds and arising in them during germination in the growth of plants. Experientia (Basel) 5, 313–317 (1949).

    Article  Google Scholar 

  • Virtanen, A. L, u. S. Saubert, V. Hausen: Über die Bedeutung der das Redoxpotential erniedrigenden Stoffe für das Wachstum der Pflanze. Z. Pflanzenernähr., Düng. u. Bodenkde 45, 11–22 (1949).

    Article  CAS  Google Scholar 

  • Dependence of nitrate reduction in green plants on reducing substances. Acta chem. scand. (Copenh.) 5, 638–642 (1951).

    Google Scholar 

  • Walzel, G.: Vitamin C in Cuscuta. Protoplasma 41, 260–262 (1952).

    Article  CAS  Google Scholar 

  • Wasiuta, M.: Über Vitamin C in der Pflanze. Österr. bot. Z. 96, 201–220 (1949).

    Article  Google Scholar 

  • Weber, F.: Frühtreiben und Vitamin C-Gehalt. Protoplasma 34, 317–319 (1940).

    Article  CAS  Google Scholar 

  • Impatiens-Nektar. Phyton (Horn, N.-Oe.) 3, 110–111 (1951).

    Google Scholar 

  • Whatley, F. R., M. B. Allen and D. I. Arnon: Photosynthetic phosphorylation as an anaerobic process. Biochim. et Biophysica Acta 16, 605–606 (1955).

    Article  CAS  Google Scholar 

  • Willstaedt, H.: Über den Vitamingehalt einiger eßbarer Pilze. Svensk kem. Tidskr. 53, 23–28 (1941).

    CAS  Google Scholar 

  • Winter, E.: Ascorbinsäure-Synthese in Gewebeschnitten. Planta (Berl.) 41, 52–58 (1952).

    Article  CAS  Google Scholar 

  • Wokes, F., and R. Melville: Vitamin C in the walnut (Juglans regia). Biochemic. J. 43, 585–592 (1948).

    CAS  Google Scholar 

  • Wokes, F., J. G. Organ, J. Duncan and F. C. Jacoby: Apparent vitamin C in foods. Biochemic. J. 37, 695–702 (1943).

    CAS  Google Scholar 

  • Wood, J. G.: Nitrogen metabolism of higher plants. Annual Rev. Plant Physiol. 4, 1–22 (1953).

    Article  Google Scholar 

  • Wood, J. G., D. H. Cruickshank and R. H. Kuchel: The metabolism of starving leaves. I.–III. Austral. J. Exper. Biol. a. Med. Sci. 21, 37–53 (1943).

    Article  CAS  Google Scholar 

  • Zepkova, G. A,: Concentration of vitamin C in certain plant species of Central Asia. C. r. Acad. Sci. URSS. 48, 655–658 (1945).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Åberg, B. (1958). Ascorbic acid. In: Åberg, B., et al. Aufbau · Speicherung · Mobilisierung und Umbildung der Kohlenhydrate / Formation · Storage · Mobilization and Transformation of Carbohydrates. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94731-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94731-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94732-2

  • Online ISBN: 978-3-642-94731-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics