Skip to main content

The role of mineral elements in the activity of plant enzyme systems

  • Chapter

Abstract

This chapter has two objects. The first is to outline the role of mineral elements in the activation of enzyme systems occurring in higher plants and microorganisms. The second is to discuss related aspects of interest to physiologists including multiple metal activation, status of essential and non-essential elements and effects of total metal content on enzyme patterns. It is necessary at times to refer to enzymes in animal tissues to illustrate certain points. References to many physiological studies in plant nutrition have been omitted where they do not directly concern aspects of enzyme activity. Reviews by Mulder (1950), Hewitt (1951) and Pirson (1955) deal with such related physiological aspects of mineral nutrition not included here. It is a pleasure to acknowledge the stimulation gained from reviews in the Annual Reviews of Biochemistry and Plant Physiology and especially from those of Mc Elroy (1953), Mc Elroy and Nason (1954), and the recent symposia of the McCollum-Pratt Institute (Johns Hopkins University Press, Baltimore) on Copper Metabolism (1950), on Phosphorus Metabolism (1951) on the Mechanism of Enzyme Action (1954), and on Inorganic Nitrogen Metabolism (1956), all edited by Mc Elroy and Glass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Adler, E., H. v. Euler, H. Gunther and M. Plass: Isocitric dehydrogenase and glutamic acid synthesis in animal tissues. Biochemic. J. 33, 1028–1045 (1939).

    CAS  Google Scholar 

  • Agarwala, S. C.: Relation of nitrogen supply to the molybdenum requirements of cauliflower grown in sand culture. Nature (Lond.) 169, 1099–1100 (1952).

    CAS  Google Scholar 

  • Agarwala, S. C., and E. J. Hewitt: Molybdenum as a plant nutrient. IV. The interrelationships of molybdenum and nitrogen supply in chlorophyll and ascorbic acid fractions in cauliflower plants grown in sand culture. J. Horticult. Sci. 29, 291–300 (1954).

    CAS  Google Scholar 

  • Molybdenum as a plant nutrient. VI. Effects of molybdenum supply on the growth and composition of cauliflower plants given different sources of nitrogen supply in sand culture. J. Horticult. Sci. 30, 163–180 (1955).

    Google Scholar 

  • Allen, M.B., and D. I. Arnon: Studies on nitrogen fixing bacteria. II. The sodium requirement of Anabaena cylindrica. Physiol. Plantarum (Copenh.) 8, 653–660 (1955a).

    CAS  Google Scholar 

  • Studies on nitrogen fixing bacteria. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol. 30, 366–372 (1955b).

    Google Scholar 

  • Altmann, S. M., and E. M. Crook: Activation of enzymes by chelating agents. Nature (Lond.) 171, 76–77 (1953).

    CAS  Google Scholar 

  • Altschul, A. M., R. Abrams and T. R. Hogness: Soluble cytochrome c peroxidase. J. of Biol. Chem. 130, 427–428 (1929).

    Google Scholar 

  • Anderson, H. B.: The activation of Jack bean arginase by cobalt, manganese and iron. Biochemic. J. 39, 139–142 (1945).

    CAS  Google Scholar 

  • Anderson, I. C., and H. J. Evans: Effect of manganese and certain other cations on isocitric dehydrogenase and malic enzyme activites in Phaseolus vulgaris. Plant Physiol. 31, 22–28 (1956).

    PubMed  CAS  Google Scholar 

  • Andreae, W. A.: The photoinduced oxidation of manganous ions. Arch. of Biochem. a. Biophysics. 55, 584–586 (1955).

    CAS  Google Scholar 

  • Appleby, C. A., and R. K. Morton: Crystalline cytochrome and lactic dehydrogenase of yeast. Nature (Lond.) 173, 749–752 (1954).

    CAS  Google Scholar 

  • Arnon, D. I.: Localisation of polyphenol oxidase in the chloroplasts of Beta vulgaris. Nature (Lond.) 162, 341–343 (1948).

    CAS  Google Scholar 

  • Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).

    Google Scholar 

  • Criteria of essentiality of inorganic micronutrients for plants. Trace elements in plant physiology, pp. 31–39. Waltham, Mass.: Chronica Botanica 1950a.

    Google Scholar 

  • Functional aspects of copper in plants. “Copper Metabolism”, pp. 89–114. Ed. W. D. Mc Elroy and B. Glass. Symposium. Baltimore: Johns Hopkins Univ. Press 1950b.

    Google Scholar 

  • Extracellular photosynthetic reactions. Nature (Lond.)167, 1008–1011 (1951).

    Google Scholar 

  • Growth and function as criteria in determining the essential nature of inorganic nutrients, chap. 13, pp. 313–341 in Univ. Wisconsin Centennial Symposium on mineral nutrition 1949. Ed. E. Truog, Madison (Wisconsin) 1952.

    Google Scholar 

  • Arnon, D. I., A. Fujiwara, G. Wessel and J. T. Woolley: Molybdenum in the nutrition of Scenedesmus. Proe. Amer. Soe. Plant Physiol. Symposium, Madison 1953.

    Google Scholar 

  • Arnon, D. I., and P. R. Stout: The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 14, 371–375 (1939).

    PubMed  CAS  Google Scholar 

  • Arnon, D. I., and G. Wessel: Vanadium as an essential element for green plants. Nature (Lond.) 172, 1039–1041 (1953).

    CAS  Google Scholar 

  • Arnon, D. I., F. R. Whatley and M. B. Allen: Photosynthesis by isolated chloroplasts. II. Photosynthetic phosphorylation, the conversion of light into phosphate bond energy. J. Amer. Chem. Soc. 76, 6324–6329 (1954).

    CAS  Google Scholar 

  • Auhagen, E.: Über Co-carboxylase. Hoppe-Seylers Z. 209, 20–26 (1932).

    Google Scholar 

  • Avis, P. G., F. Bergel and R. C. Bray: Cellular constituents. The chemistry of xanthine oxidase. Part I. The preparation of a crystalline xanthine oxidase from cows milk. J. Chem. Soc. Lond. 1955, 1100–1105.

    Google Scholar 

  • Cellular constituents. The chemistry of xanthine oxidase. Part III. Estimations of the cofactors and the catalytic activities of enzyme fractions from cow’s milk. J. Chem. Soc. Lond. 1956, 1219–1226.

    Google Scholar 

  • Avis, P. G., F. Bergel, R. C. Bray and K. V. Shooter: A crystalline material with xanthine oxidase activity. Nature (Lond.) 173, 1230–1231 (1954).

    CAS  Google Scholar 

  • Baddiley, J.: Pyridoxal derivatives in transamination. Nature (Lond.) 170, 711–712 (1952).

    CAS  Google Scholar 

  • Bailey, J. M., G. J. Thomas and W. J. Whelan: Selective inhibition of enzymic impurities associated with potato Phosphorylase. Biochemic. J. 49, Proc. VI (1951).

    Google Scholar 

  • Bailey, K., and E. C. Webb: Purification and properties of yeast pyrophosphatase. Biochemic. J. 38, 394–398 (1944).

    CAS  Google Scholar 

  • Purification of yeast hexokinase and its reaction with β.β-dichloro-diethyl sulphide. Biochemic. J. 42, 60–68 (1948).

    Google Scholar 

  • Baker, D., and J. M. B. Nelson: Tyrosinase and plant respiration. J. Gen. Physiol. 26, 269–276 (1943).

    PubMed  CAS  Google Scholar 

  • Ballentine, R.: The biosynthesis of stable cobalto-proteins by plants. II. Interaction of iron and cobalt metabolism in Neurospora crassa. J. Cellul. a. Comp. Physiol. 42, 415–426 (1953).

    CAS  Google Scholar 

  • Ballentine, R., and D. G. Stevens: The biosynthesis of stable cobalto-proteins by plants. J. Cellul. a. Comp. Physiol. 37, 369–388 (1951).

    CAS  Google Scholar 

  • Bandurski, R. S., and C. M. Groines: Phospho-enolpyruvate carboxylase. Proc. Amer. Soc. Plant Physiol. Symposium, Madison (Wisconsin) 1953.

    Google Scholar 

  • Bard, R. C., and I. C. Gunsalus: Glucose metabolism of Clostridium perfringens: Existence of a metallo-aldolase. J. Bacter. 59, 387–400 (1950).

    CAS  Google Scholar 

  • Barker, H., A. H. Ennor and K. Harcourt: The catalytic effect of molybdate on the breakdown of phosphocreatine. Austral. J. Sci. Res. B 3, 337–345 (1950).

    Google Scholar 

  • Barron, E. S. G., R. H. de Meio and E. Klemperer: Studies on biological oxidations. V. Copper and hemochromogens as catalysts for the oxidation of ascorbic acid. The mechanism of the oxidation. J. of Biol. Chem. 112, 625–640 (1936).

    CAS  Google Scholar 

  • Baumann, E., and O. Schimke: d-Peptid-Spaltung durch Enzympräparate aus wachsenden Keimpflanzen. Beeinflussung durch natürliche und zusätzliche Aktivatoren. Zur Kenntnis der Peptidasen. II. Biochem. Z. 310, 119–130 (1941a).

    Google Scholar 

  • d-Peptidase in wachsenden Teilen älterer Pflanzen. IV. Zur Kenntnis der Peptidasen. Biochem. Z. 310, 302–311 (1941b).

    Google Scholar 

  • Beaudreau, G. S., and F. L. Renmert: Krebs cycle activity of particles from bean seedlings. Arch. of Biochem. a. Biophysics 55, 469–485 (1955).

    CAS  Google Scholar 

  • Beevers, H., and W. O. James: The behaviour of secondary and tertiary amines in the presence of catechol and Belladonna catechol oxidase. Biochemic. J. 43, 636–639 (1948).

    CAS  Google Scholar 

  • Beinert, H., and F. L. Crane: The function of electron transferring flavoprotein in the first oxidative step of the fatty acid cycle, pp. 601–624 in Symposium on Inorganic Nitrogen Metabolism, ed. by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1956.

    Google Scholar 

  • Berger, J., and G. S. Avery jr.: Glutamic and isocitric acid dehydrogenases in the Avena coleoptile. Amer. J. Bot. 31, 11–19 (1944).

    CAS  Google Scholar 

  • Berger, J., and M. J. Johnson: Metal activation of peptidases. J. of Biol. Chem. 130, 641–654 (1939a).

    CAS  Google Scholar 

  • The leucyl peptidases of malt, cabbage and spinach. J. of Biol. Chem. 130, 655–667 (1939b).

    Google Scholar 

  • The action of dipeptidases. J. of Biol. Chem. 133, 639–640 (1940).

    Google Scholar 

  • Berger, L., M. W. Slein, S. P. Colowick and C. F. Cori: Isolation of hexokinase from baker’s yeast. J. Gen. Physiol. 29, 379–391 (1946).

    CAS  Google Scholar 

  • Bernheim, F.: The aldehyde oxidase of the potato. Biochemic. J. 22, 344–352 (1928).

    CAS  Google Scholar 

  • Bertrand, D.: Études sur la laccase. II. Comparison avec les produits anterièrement decrits. Bull. Soc. Chim. biol. Paris 26, 40 (1944).

    CAS  Google Scholar 

  • Études sur la laccase. VI. Remarques sur le sujet de la co-laccase. Bull. Soc. Chim. biol. Paris 29, 613–615 (1947).

    Google Scholar 

  • Bertrand, G.: Sur l’intervention des manganèses dans les oxydations provoquées par la laccase. C. r. Acad. Sci. Paris 124, 1032–1035 (1897).

    CAS  Google Scholar 

  • Bhagvat, K., and R. Hill: Cytochrome oxidase in higher plants. New Phytologist 50, 112–120 (1951).

    CAS  Google Scholar 

  • Binkley, F., and M. Boyd: Catalytic cleavage of thio-amino acids. J. of Biol. Chem. 217, 67–77 (1955).

    CAS  Google Scholar 

  • Black, S.: Yeast aldehyde dehydrogenase. Arch. of Biochem. a. Biophysics 34, 86–97 (1951).

    CAS  Google Scholar 

  • Black, S., and N. G. Wright: β-aspartyl kinase and β-aspartyl phosphate. J. of Biol. Chem. 213, 27–37 (1955).

    CAS  Google Scholar 

  • Boeri, E., E. Cutolo, M. Luzzati and L. Tosi: Preparation and properties of cytochrome b2 from yeast. Arch. of Biochem. a. Biophysics 56, 487–499 (1955).

    CAS  Google Scholar 

  • Bonner, J.: Biochemical mechanisms in the respirations of the Avena coleoptile. Arch. of Biochem. 17, 311–326 (1948).

    CAS  Google Scholar 

  • Bonner, J., and S. G. Wildman: Enzymatic mechanism on the respiration of spinach leaves. Arch. of Biochem. 10, 497–518 (1946).

    CAS  Google Scholar 

  • Boroughs, H.: Studies on the acid phosphatases of green leaves. Arch. of Biochem. a. Biophysics 49, 30–42 (1954).

    CAS  Google Scholar 

  • Bortels, H.: Weitere Untersuchungen über die Bedeutung von Molybdän, Vanadium, Wolfram und anderen Erdaschenstoffen für stickstoffverbindende und andere Mikroorganismen. Zbl. Bakter. 95, 193–218 (1936).

    CAS  Google Scholar 

  • Über die Wirkung von Agar sowie Eisen, Molybdän und anderen Spurenelementen in stickstofffreier Nährlösung auf Azotobacter. Zbl. Bakter. 100, 373–393 (1939).

    Google Scholar 

  • Bossard, M.: Action des molybdates sur divers enzymes. Bull. Soc. Chim. biol. Paris 29, 218–221 (1947).

    PubMed  CAS  Google Scholar 

  • Boswell, J. G.: Oxidation systems in the potato. Ann. of Bot., N. S. 9, 55–76 (1945).

    CAS  Google Scholar 

  • Boswell, J. G., and G. C. Whiting: A study of the polyphenol oxidase system in potato tubers. Ann. of Bot., N.S. 2, 847–864 (1938).

    CAS  Google Scholar 

  • Oxidase systems in the tissues of higher plants. New Phytologist 39, 241–265 (1940).

    Google Scholar 

  • Bradfield, J. R. G.: Plant carbonic anhydrase. Nature (Lond.) 159, 467–468 (1947).

    CAS  Google Scholar 

  • Brown, A. H., and D. R. Goddard: Cytochrome oxidase in wheat embryo. Amer. J. Bot. 28, 319–329 (1941).

    CAS  Google Scholar 

  • Bucher, T.: Über ein phosphatübertragendes Gärungsferment. Biochim. et Biophysica Acta 1, 292–314 (1947).

    CAS  Google Scholar 

  • Burk, D.: Azotase and nitrogenase in Azotobacter. Erg. Enzymforsch. 3, 23–57 (1934).

    CAS  Google Scholar 

  • Burk, D., J. Hearson, L. Caroline and A. L. Shade: Reversible complexes of cobalt, histidine and oxygen gas. J. of Biol. Chem. 165, 723–724 (1946).

    CAS  Google Scholar 

  • Burris, R. H.: Organic acids in plant metabolism. Annual Rev. Plant Physiol. 4, 91–114 (1953).

    Google Scholar 

  • Calvin, M.: Chelation and catalysis. In: The Mechanism of Enzyme Action, pp. 221–244. Symposium McCollum Pratt Institute, ed. W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1954.

    Google Scholar 

  • Calvin, M., R. H. Bailes and W. K. Wilmarth: The oxygen carrying synthetic chelate compounds. I. J. Amer. Chem. Soc. 68, 2254–2256 (1946) et seq.

    CAS  Google Scholar 

  • Caputto, R.: The enzymic synthesis of adenylic acid: adenosine kinase. J. of Biol. Chem. 189, 801–814 (1951).

    CAS  Google Scholar 

  • Ceithamel, J., and B. Vennesland: The synthesis of tricarboxyhc acids by carbon dioxide fixation in parsley root preparations. J. of Biol. Chem. 178, 133–143 (1949).

    Google Scholar 

  • Chance, B.: The state of catalase in the respiring bacterial cell. Science (Lancaster, Pa.) 116, 202–203 (1952).

    CAS  Google Scholar 

  • Oxidase and peroxidase reactions in the presence of dihydroxymaleic acid. J. of Biol. Chem. 197, 577–589 (1952).

    Google Scholar 

  • Chesters, C.G.C., and G. N. Rolinson: Trace elements and streptomycin production. J. Gen. Microbiol. 5, 559–565 (1951).

    PubMed  CAS  Google Scholar 

  • Cohen, P. P.: The carboxylase activity of Jack beans (Canavalia ensiformis) and soy beans (Glycine max.) J. of Biol. Chem. 164, 685–689 (1946).

    CAS  Google Scholar 

  • Cohen, S. S.: Gluconokinase and the oxidative path of glucose-6-phosphate utilisation. J. of Biol. C hem. 189, 617–628 (1951).

    CAS  Google Scholar 

  • Colter, J. S., and J. H. Quastel: Catalytic decomposition of hydroxylamine by haemoglobin. Arch. of Biochem. 27, 368–389 (1950).

    CAS  Google Scholar 

  • Conn, E., B. Vennesland and L. M. Kraemer: Distribution of a triphosphopyridine nucleotide — specific enzyme catalysing the reversible oxidative decarboxylation of malic acid in higher plants. Arch. of Biochem. 23, 179–197 (1949).

    CAS  Google Scholar 

  • Cori, G. T., S. P. Colowick and C. F. Cori: The enzymatic conversion of glucose-1-phosphoric ester to 6-ester in tissue extracts. J. of Biol. Chem. 124, 543–555 (1938).

    CAS  Google Scholar 

  • Crane, F. L., J. G. Hange and H. Beinert: Flavoproteins involved in the first oxidative step of the fatty acid cycle. Biochim. et Biophysica Acta 17, 292–294 (1955).

    CAS  Google Scholar 

  • Crewther, W. G.: Studies on Aerobacillus polymyxa. Austral. J. Biol. Sci. 6, 204–221 (1953).

    Google Scholar 

  • Dalton, A. R., and J. M. Nelson: Tyrosinase from the wild mushroom, Lactarius piperatus. J. Amer. Chem. Soc. 61, 2946 (1939).

    CAS  Google Scholar 

  • Damodaran, M., and T. R. Venkatesan: Amide synthesis in plants. I. The succinic oxidase system in plants. Proc. Indian Acad. Sci., Sect. B 13, 345–359 (1941).

    Google Scholar 

  • Darken, M. A.: Production of vitamin B12 by microorganisms and its occurrence in plant tissues. Bot. Review 19, 99–130 (1953).

    CAS  Google Scholar 

  • Davenport, H. E.: Cytochrome components in chloroplasts. Nature (Lond.) 170, 112–114 (1952).

    Google Scholar 

  • Davenport, H. E., and R. Hill: The preparation and some properties of cytochrome f. Proc. Roy. Soc. Lond. Ser. B 139, 327–345 (1952).

    CAS  Google Scholar 

  • Davies, D. R., and W. C. Davies: The colorimetric determination of phosphorus in the presence of interfering substances. Biochemic. J. 26, 2046–2055 (1932).

    CAS  Google Scholar 

  • Davison, D. C.: The distribution of formic and alcohol dehydrogenase in the higher plants with particular reference to their variation in the pea during its life cycle. Proc. Linnean Soc. N. S. Wales 74, 26–36 (1949a).

    CAS  Google Scholar 

  • The importance of formic dehydrogenase in the oxidative mechanisms of Pisum sativum. Proc. Linnean. Soc. N. S. Wales 74, 37–56 (1949b).

    Google Scholar 

  • Studies on plant formic dehydrogenase. Biochemic. J. 49, 520–526 (1951).

    Google Scholar 

  • Dawson, C. R.: The copper protein: ascorbic acid oxidase. In: Copper metabolism, pp. 18–47, Symposium McCollum-Pratt Institute, ed. W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1950.

    Google Scholar 

  • Day. R., and J. Franklin: Plant carbonic anhydrase. Science (Lancaster, Pa.) 104, 363–365 (1946).

    CAS  Google Scholar 

  • Dickeman, S. R., and A. A. Cloutier: Activation and stabilisation of aconitase by ferrous ions. Arch. of Biochem. 25, 229–231 (1950).

    Google Scholar 

  • Dixon, M.: Multienzyme systems. Cambridge: University Press 1949.

    Google Scholar 

  • Dubnoff, J. W., and E. Bartron: The effect of B12 on enzyme activity in E. coli mutant 113–3. Arch. of Biochem. a. Biophysics 61, 99–110 (1956).

    CAS  Google Scholar 

  • Ducet, G., and E. J. Hewitt: Relation of molybdenum status and nitrogen supply to respiration in cauliflower leaves. Nature (Lond.) 173, 1141–1142 (1954).

    CAS  Google Scholar 

  • Ducet, G., et A. J. Rosenberg: Activité respiratoire chez les végétaux supérieurs. II. Activités cytochrome oxydasique et polyphenol-oxydasique chez quelques végétaux supérieurs. Bull. Soc. Chim. biol. Paris 33, 321–336 (1951).

    PubMed  CAS  Google Scholar 

  • Dunn, F. J., and C. R. Dawson: On the nature of ascorbic acid oxidase. J. of Biol. Chem. 189, 485–497 (1951).

    CAS  Google Scholar 

  • Eichel, B., W. W. Wainio, P. Pierson and S. J. Cooperstein: A partial separation and characterisation of cytochrome oxidase and cytochrome b. J. of Biol. Chem. 183, 89–103 (1950).

    CAS  Google Scholar 

  • Elliott, W. H.: Studies on the enzymic synthesis of glutamine. Biochemic. J. 49, 106–112 (1951).

    CAS  Google Scholar 

  • Isolation of glutamine synthetase and glutamotransferase from green peas. J. of Biol. Chem. 201, 661–672 (1953).

    Google Scholar 

  • Elvehjem, C. A.: The role of iron and copper in the growth and metabolism of yeast. J. of Biol. Chem. 90, 111–132 (1931).

    Google Scholar 

  • Ephrussi, B., et P. P. Slonimski: La synthese adaptive des cytochromes chez la levure de boulangerie. Biochim. et Biophysica Acta 6, 256–267 (1950).

    CAS  Google Scholar 

  • Euler, H. v., E. Adler, G. Gunther u. L. Elliott: Isocitronensäuredehydrase und Glutaminsäuresynthese in höheren Pflanzen und in Hefe. Enzymologia (Den Haag) 6, 337–341 (1939).

    Google Scholar 

  • Euler, H. v., E. Adler, G. Gunther u. R. Vestin: Die Wirkungen von Cozymase, Adenylsäure und Cocarboxylase und ihre Beeinflussung durch Mn. Hoppe-Seylers Z. 247, 127–134 (1937).

    Google Scholar 

  • Evans, H. J.: Diphosphopyridine nucleotide—nitrate reductase from soya bean root nodules. Plant Physiol. 29, 298–300 (1954).

    PubMed  CAS  Google Scholar 

  • Evans, H. J., and A. Nason: Pyridine nucleotide — nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).

    PubMed  CAS  Google Scholar 

  • Evans, H. J., E. R. Purvis and F. E. Bear: Molybdenum nutrition of alfalfa. Plant Physiol. 25, 555–566 (1950).

    PubMed  CAS  Google Scholar 

  • Finkle, B. J., and D. Appleman: The effect of magnesium concentration on chlorophyll and catalase development in Chlorella. Plant Physiol. 28, 652–663 (1953).

    PubMed  CAS  Google Scholar 

  • Fleischer, W. E.: The relation between chlorophyll content and rate of photosynthesis. J. Gen. Physiol. 18, 573–595 (1935).

    PubMed  CAS  Google Scholar 

  • Foster, J. W., and F. W. Denison: Role of zinc in metabolism. Nature (Lond.) 166, 833–834 (1950).

    CAS  Google Scholar 

  • Galston, A. W., and R. S. Baker: Studies on the physiology of light action. II. The photodynamic action of riboflavin. Amer. J. Bot. 36, 773–780 (1949).

    Google Scholar 

  • Studies on the physiology of light action. III. Light activation of a flavoprotein enzyme by reversal of the naturally occurring inhibition. Amer. J. Bot. 38, 190–195 (1951).

    Google Scholar 

  • Galston, A. W., J. Bonner and R. S. Baker: Flavoprotein and peroxidase as constituents of the indole-acetic acid oxidase of peas. Amer. J. Bot. 37, 677–678 (1950).

    Google Scholar 

  • Flavoprotein and peroxidase as components of the indole-acetic acid oxidase system of peas. Arch. of Biochem. a. Biophysics 42, 456–469 (1953).

    Google Scholar 

  • Galston, A. W., R. K. Bonnichsen and D. I. Arnon: The preparation of highly purified spinach leaf catalase. Acta Chim. Scand. 5, 781–790 (1951).

    CAS  Google Scholar 

  • Galston, A. W., and L. Y. Dalberg: The adaptive function and physiological significance of indole-acetic acid oxidase. Amer. J. Bot. 41, 373–380 (1954).

    CAS  Google Scholar 

  • Gauch, H. G., and W. M. Dugger jr.: The role of boron in the translocation of sucrose. Plant. Physiol. 28, 457–466 (1953).

    PubMed  CAS  Google Scholar 

  • George, P.: The nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. Biochemic. J. 54, 267–276 (1953).

    CAS  Google Scholar 

  • Gilbert, J. B., M. C. Otey and V. E. Price: The enzymatic suscepti-bility of the red cobalt complexes of several dipeptides. J. of Biol. Chem. 190, 377–389 (1951).

    CAS  Google Scholar 

  • Glenn, J. L., and F. L. Crane: Studies on metalloflavoproteins. V. The action of silico-molybdate in the reduction of cytochrome c by aldehyde oxidase. Biochim. et Biophysica Acta 22, 111–115 (1956).

    CAS  Google Scholar 

  • Goddard, D. R.: Cytochrome c and cytochrome oxidase from wheat germ. Amer. J. Bot. 31, 270–276 (1944).

    CAS  Google Scholar 

  • Goddard, D. R., and C. Holden: Cytochrome oxidase in the potato tuber. Arch. of Biochem. 27, 41–47 (1950).

    CAS  Google Scholar 

  • Goddard, D. R., and B. J. D. Meuse: Respiration of higher plants. Annual. Rev. Plant Physiol. 1, 207–232 (1950).

    Google Scholar 

  • Gortner, W. A., and M. Kent: Indole-acetic acid oxidase and an inhibitor in pineapple. J. of Biol. Chem. 204, 593–603 (1953).

    CAS  Google Scholar 

  • Green, D. E., R. E. Basford and B. Mackler: The role of iron and copper in terminal electron transport, pp. 628–649 in Symposium on Inorganic Nitrogen Metabolism, ed. by W. E. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press. 1956.

    Google Scholar 

  • Green, D. E., and H. Beinert: Xanthine oxidase, a molybdoflavoprotein. Biochim. et Biophysica Acta 11, 599–600 (1953).

    CAS  Google Scholar 

  • Green, D. E., O. Herbert and V. Subrahmanyam: “Carboxylase”. J. of Biol. Chem. 138, 327–339 (1941).

    CAS  Google Scholar 

  • Green, D. E., and D. Richter: Adrenaline and adrenochrome. Biochemic. J. 31, 596–616 (1937).

    CAS  Google Scholar 

  • Grimm, P. W., and P. J.Allen: Promotion by zinc of the formation of cytochromes in Ustilago sphaerogena. Plant Physiol. 29, 369–377 (1954).

    PubMed  CAS  Google Scholar 

  • Haas, E., C. J. Harrer and T. R. Hogness: Cytochrome reductase. II. Improved method of isolation, inhibition and inactivation. J. of Biol. Chem. 143, 341–349 (1942).

    CAS  Google Scholar 

  • Haas, E., B. L. Horecker and T. R. Hogness: Soluble cytochrome c oxidase. J. of Biol. Chem. 130, 427–428 (1939).

    Google Scholar 

  • The enzymatic reduction of cytochrome c. J. of Biol. Chem. 136, 747–774 (1940).

    Google Scholar 

  • Happold, F. C., and A. Struyvenberg: The activation of trypto-phanase apoenzyme by potassium, ammonium and rubidium ions. Biochemic. J. 58, 379–382 (1954).

    CAS  Google Scholar 

  • Harrison, K.: Activation of fumaric hydrogenase by ferrous iron. Nature (Lond.) 172, 509 (1953).

    CAS  Google Scholar 

  • Hartman, W. J., and G. Kalnitsky: The competitive effects of metal ions on citrate oxidation. Arch. of Biochem. 26, 6–14 (1950).

    CAS  Google Scholar 

  • Hartree, E. F.: Haematin compounds, pp. 197–245 in Vol. 4 of “Modem methods of plant analysis”, ed. by K. Paech and M. V. Tracey. Heidelberg: Springer 1955.

    Google Scholar 

  • Haskins, F. A., A. Tissières, H. K. Mitchell and M. B. Mitchell: Cytochrome and the succinic acid oxidase systems of poky strains of Neurospora. J. of Biol. Chem. 200, 819–826 (1953).

    CAS  Google Scholar 

  • Healy, W. B., Cheng, Sze-chuch and W. D. Mc Elroy: Metal toxicity and iron deficiency effects on enzymes in Neurospora. Arch. of Biochem. a. Biophysics 54, 206–214 (1955).

    CAS  Google Scholar 

  • Hellerman, L.: Reversible inactivations of certain hydrolytic enzymes. Physiologic. Rev. 17, 454–484 (1937).

    CAS  Google Scholar 

  • Hellerman, L., and C. C. Stock: Activation of enzymes. IV. The specificity of arginase and the non-enzymatic hydrolysis of guanidino compounds, activating metal ions and liver arginase. J. of Biol. Chem. 125, 771–793 (1938).

    CAS  Google Scholar 

  • Herbert, D.: Oxalacetic decarboxylase. Biochemic. J. 47, Proc. (i) (1950).

    Google Scholar 

  • Hers, H. G.: Rôle du magnésium et du potassium dans la reaction fructokinasique. Biochim. et Biophysica Acta 8, 424–430 (1952).

    CAS  Google Scholar 

  • Hewitt, E. J.: The role of the mineral elements in plant nutrition. Annual Rev. Plant Physiol. 2, 25–52 (1951).

    CAS  Google Scholar 

  • The importance of molybdenum in the nutrition of horticultural plants. Report of the 13th Internat. Horticultural Congr. London I, pp. 375–385, 1952. Royal Horticultural Soc. London 1953.

    Google Scholar 

  • Metal interrelationships in plant nutrition. 1. Effects of some metal toxicities on sugar beet, tomato, oat, potato and marrowstem kale grown in sand culture. J. of Exper. Bot. 4, 59–64 (1953).

    Google Scholar 

  • Metal interrelationships in plant nutrition. 2. The relation of metal toxicity, molybdenum and nitrogen source to chlorophyll and magnesium content of beet in sand culture. J. of Exper. Bot. 5, 110–118 (1954a).

    Google Scholar 

  • Modem methods of determining the mineral nutrient requirement of plants with special reference to the micronutrient elements. Rapport générale Section 11a 8th Internat. Botanical Congr., Paris (1954b).

    Google Scholar 

  • Hewitt, E. J., and S. C. Agarwala: Reduction of triphenyltetrazolium chloride by plant tissues and its relation to molybdenum status. Nature (Lond.) 169, 545–546 (1952).

    CAS  Google Scholar 

  • Hewitt, E. J., S. C. Agarwala and E. W. Jones: Effect of molybdenum status on the ascorbic acid content of plants in sand culture. Nature (Lond.) 166, 1119–1120 (1950).

    CAS  Google Scholar 

  • Hewitt, E. J., E. G. Fisher and M. I. Candela: Factors affecting the activity of nitrate reductase in cauliflower plants. Long Ashton Res. St. Ann. Rep. 1955, 202–210.

    Google Scholar 

  • Hewitt, E. J., and D. G. Hallas: The use of Aspergillus niger (van Tiegh). M strain as a test organism in the study of molybdenum as a plant nutrient. Plant a. Soil 3, 366–408 (1951).

    CAS  Google Scholar 

  • Hewitt, E. J., and E. W. Jones: The production of molybdenum deficiency in plants in sand culture with special reference to tomato and Brassica crops. J. Pomol. a. Horticult. Sci. 23, 254–262 (1947).

    CAS  Google Scholar 

  • Hewitt, E. J., E. W. Jones and A. H. Williams: Relation of molybdenum and manganese to the free amino acid content of the cauliflower. Nature (Lond.) 163, 681–682 (1949).

    CAS  Google Scholar 

  • Hewitt, E. J., and C. C. Mc Cready: Relation of nitrogen supply to the molybdenum requirement of tomato plants grown in sand culture. Nature (Lond.) 174, 186 (1954).

    CAS  Google Scholar 

  • Hill, R.: Oxido-reductions in chloroplasts. Adv. Enzymol 12, 1–39 (1951).

    CAS  Google Scholar 

  • Hill, R., and E. F. Hartree: Hematin compounds in plants. Annual Rev. Plant Physiol. 4, 115–150 (1953).

    Google Scholar 

  • Hill, R., and R. Scarisbrick: The Haematin compounds of leaves. New Phytologist 50, 98–111 (1951).

    CAS  Google Scholar 

  • Hickey, R. J.: The inactivation of iron by 2′,2′,-bipyridyl and its effect on riboflavin synthesis by Clostridium acetobutylicum. Arch. of Biochem. 8, 439–447 (1945).

    CAS  Google Scholar 

  • Holm-Hansen, O., G. C. Gerloff and F. Skoog: Cobalt as an essential element for blue-green algae. Physiol. Plantarum (Copenh.) 7, 665–675 (1954).

    CAS  Google Scholar 

  • Honda, S. I.: Succinoxidase and cytochrome oxidase in barley roots. Plant Physiol. 30, 402–410 (1955).

    PubMed  CAS  Google Scholar 

  • Humphries, T. E.: Studies on an enzyme system from wheat germ catalysing the aerobic oxidation of reduced triphosphopyridine nucleotide. Plant Physiol. 30, 46–54 (1955).

    Google Scholar 

  • ichioka, P. S., and D. I. Arnon: Molybdenum in relation to nitrogen metabolism. II. Assimilation of ammonium and urea without molybdenum by Scenedesmus. Physiol. Plantarum (Copenh.) 8, 552–560 (1955).

    CAS  Google Scholar 

  • James, W. O.: The terminal oxidase in the respiration of the embryo and young roots in barley. Proc. Roy. Soc. Lond., Ser. B 141, 289–299 (1953).

    CAS  Google Scholar 

  • James, W. O., and D. Boulter: Further studies of the terminal oxidases in the embryos and young roots of barley. New Phytologist 54, 1–12 (1955).

    CAS  Google Scholar 

  • James, W. O., and J. M. Cragg: The ascorbic acid system as an agent in barley respiration. New Phytologist 42, 28–44 (1943).

    CAS  Google Scholar 

  • James, W. O., E. A. H. Roberts, H. Beevers and P. C. De Kock: The secondary oxidation of amino acids by the catechol oxidase of Belladonna. Biochemic. J. 43, 626–636 (1948).

    CAS  Google Scholar 

  • Jensen, H. L.: The influence of molybdenum, calcium and agar on nitrogen fixation by Azotobacter indicum. Proc. Linnean Soc. N. S. Wales 72, 299–310 (1947).

    Google Scholar 

  • Jensen, H. L., and R. L. Betty: Nitrogen fixation by leguminous plants. III. The importance of molybdenum in symbiotic nitrogen fixation. Proc. Linnean Soc. N. S. Wales 68, 1–8 (1943).

    CAS  Google Scholar 

  • Jensen, H. L., and D. Spencer: The influence of molybdenum and vanadium on nitrogen fixation by Clostridium butyricum and related organisms. Proc. Linnean Soc. N. S. Wales 72, 73–86 (1947).

    CAS  Google Scholar 

  • Johnson,M. J.: Isolation and properties of a pure yeast polypeptidase. J. of Biol. Chem. 137, 575–586 (1941).

    CAS  Google Scholar 

  • Johnson, M. J., and J. Berger: The enzymatie properties of peptidases. Adv. Enzymol. 2, 69–92 (1942).

    CAS  Google Scholar 

  • Johnson, S. S., and S. S. Silva: The oxidation of L. ascorbic acid by plant enzymes. Biochemic. J. 31, 438–453 (1936).

    Google Scholar 

  • Jones, L. H., L. B. Shepardson and C. A. Peters: The function of manganese in the assimilation of nitrates. Plant Physiol. 24, 300–306 (1949).

    PubMed  CAS  Google Scholar 

  • Joselow, M., and C. R. Dawson: The copper of ascorbic acid oxidase. Exchange studies with radioactive copper. J. of Biol. Chem. 191, 11–20 (1951).

    CAS  Google Scholar 

  • Kachmar, J. F., and P. D. Boyer: Kinetic analysis of enzyme reactions. II. The potassium activation and cation inhibition of pyruvic phosphoferase. J. of Biol. Chem. 200, 669–682 (1952).

    Google Scholar 

  • Kalckar, H. M.: Adenyl pyrophosphatase and myokinase. J. of Biol. Chem. 153, 355–367 (1944).

    CAS  Google Scholar 

  • Kalnitsky, G., and C. H. Werkman: Enzymatic decarboxylation of oxaloacetate and carboxylation of pyruvate. Arch. of Biochem. 4, 25–40 (1943b).

    Google Scholar 

  • Kalyanasundaram, R., and L. Saraswathi-Devi: Zinc in the metabolism of Fusarium vasinfectum. Atk. Nature (Lond.) 175, 945 (1955).

    CAS  Google Scholar 

  • Kamen, M. D.: Symposium on electron transport in the metabolism of microorganisms. Part 2. Bacterial heme proteins. Bacter. Rev. 19, 250–262 (1955).

    CAS  Google Scholar 

  • Kaplan, N. O.: Symposium on electron transport in the metabolism of microorganisms. Part 1. Mechanisms of electron transport in pyridine nucleotide and flavin systems. Bacter. Rev. 19, 235–250 (1955).

    Google Scholar 

  • Kearney, E. B., and S. Englard: The enzymatic phosphorylation of riboflavin. J. of Biol. Chem. 193, 821–834 (1951).

    CAS  Google Scholar 

  • Keilin, D.: Cytochrome and respiratory enzymes. Proc. Roy. Soc. Lond., Ser. B 104, 206–252 (1929).

    CAS  Google Scholar 

  • Cytochrome and intracellular oxidase. Proc. Roy. Soc. Lond. 106, 418–444 (1930).

    Google Scholar 

  • Haemoglobin in fungi. Occurrence of haemoglobin in yeast and the supposed stabilisation of the oxygenated cytochrome oxidase. Nature (Lond.) 172, 390–393 (1953).

    Google Scholar 

  • Keilin, D., and E. F. Hartree: Coupled oxidation of alcohol. Proc. Roy. Soc. Lond., Ser. B 119, 141–159 (1936).

    CAS  Google Scholar 

  • Cytochrome oxidase. Proc. Roy. Soc. Lond., Ser. B 125, 171–186 (1938).

    Google Scholar 

  • Cytochrome and cytochrome oxidase. Proc. Roy. Soc. Lond., Ser. B 127, 167–191 (1939).

    Google Scholar 

  • Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochemic. J. 60, 310–325 (1955).

    Google Scholar 

  • Keilin, D., and T. Mann: On the haematin compound of peroxidase. Proc. Roy. Soc. Lond., Ser. B 122, 119–133 (1937).

    CAS  Google Scholar 

  • Polyphenol-oxidase: purification, nature and properties. Proc. Roy. Soc. Lond., Ser. B 125, 187–204 (1938).

    Google Scholar 

  • Laccase, a blue copper protein oxidase from the latex of Rhus succadanea. Nature (Lond.) 143, 23–24 (1939).

    Google Scholar 

  • Some properties of laccase from the latex of lacquer trees. Nature (Lond.) 145, 304 (1940).

    Google Scholar 

  • Keilin, D., and J. D. Smith: Haemoglobin and nitrogen fixation in the root nodules of leguminous plants. Nature (Lond.) 159, 692–694 (1947).

    CAS  Google Scholar 

  • Keilin, D., and A. Tissières: Haemoglobin in moulds: Neurospora crassa and Penicillium notatum. Nature (Lond.) 172, 393–394 (1953).

    CAS  Google Scholar 

  • Keilin, D., and Y. L. Wang: Haemoglobin in the root nodules of leguminous plants. Nature (Lond.) 155, 227–229 (1945).

    CAS  Google Scholar 

  • Kenten, R. H.: The oxidation of indolyl-3-acetic acid by Waxpod bean root sap and peroxidase systems. Biochemic. J. 59, 110–121 (1955).

    CAS  Google Scholar 

  • Kenten, R. H., and P. J. G. Mann: The oxidation of manganese by plant extracts in the presence of hydrogen peroxide. Biochemic. J. 45, 255–263 (1949).

    CAS  Google Scholar 

  • The oxidation of manganese by peroxidase systems. Biochemic. J. 46, 67–73 (1950).

    Google Scholar 

  • The action of peroxidase systems on ferrocyanide, molybdate, tungstate and vanadate. Biochemic. J. 50, 29–34 (1951).

    Google Scholar 

  • The oxidation of manganese by enzyme systems. Biochemic. J. 52, 125–130 (1952).

    Google Scholar 

  • The oxidation of certain dicarboxylic acids by peroxidase systems in presence of manganese. Biochemic. J. 53, 498–505 (1953).

    Google Scholar 

  • Kern, M., and E. Racker: Activation of a DPNH oxidase by an oxidation product of ascorbic. acid. Arch. of Biochem. a. Biophysics 48, 235–236 (1955).

    Google Scholar 

  • Kertesz, D.: Tyrosinase and polyphenoloxidase. The role of metallic ions in melanogenesis. Biochim. et Biophysica Acta 9, 170–179 (1952).

    CAS  Google Scholar 

  • Kertesz, Z. I.: The pectic substances. New York: Interscience 1951.

    Google Scholar 

  • Kielley, R. K.: Purification of liver xanthine oxidase. J. of Biol. Chem. 216, 405–412 (1955).

    CAS  Google Scholar 

  • Klein, R. M.: The relation of gas exchange and tyrosinase activity of tomato tissues to the level of boron nutrition of the plants. Arch. of Biochem. 30, 207–214 (1951).

    CAS  Google Scholar 

  • Klotz, I. M.: Thermodynamic and molecular properties of some metal-protein complexes, pp. 257–285 in: The Mechanism of Enzyme Action. Symposium. McCollum-Pratt Institute, ed. W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1954.

    Google Scholar 

  • Klotz, I. M., and W. C. L. Ming: Mediation by metals of the binding of small molecules by proteins. J. Amer. Chem. Soc. 76, 805–814 (1954).

    CAS  Google Scholar 

  • Kornberg, A.: Reversible enzymatic synthesis of diphosphopyridine nucleotide and inorganic pyrophosphate. J. of Biol. Chem. 182, 779–793 (1950a).

    CAS  Google Scholar 

  • Enzymatic synthesis of triphosphopyridine nucleotide. J. of Biol. Chem. 182, 805–813 (1950b).

    Google Scholar 

  • Kornberg, A., I. Lieberman and E. S. Simms: Enzymatic synthesis of purine nucleotides. J. of Biol. Chem. 215, 417–427 (1955).

    CAS  Google Scholar 

  • Kornberg, A., S. Ochoa and A. H. Mehler: Spectrophotometric studies on the decarboxylation of α-keto acids. J. of Biol. Chem. 174, 159–172 (1948).

    CAS  Google Scholar 

  • Kornberg, A., and W. E. Pricer jr.: Di- and tri-phosphopyridine nucleotide isocitric dehydrogenases in yeast. J. of Biol. Chem. 189, 123–136 (1951).

    CAS  Google Scholar 

  • Korkes, S., J. R. Stern, I. C. Gunsalus and S. Ochoa: Enzymic synthesis of citrate from pyruvate and oxaloacetate. Nature (Lond.) 166, 439–440 (1950).

    CAS  Google Scholar 

  • Krampitz, L. O., and C. H. Werkmann: The enzymic decarboxylation of oxaloacetate. Biochemic. J. 35, 595–602 (1941).

    CAS  Google Scholar 

  • Krebs, H. A.: The effect of inorganic salts on the decomposition of oxaloacetic acid. Biochemic. J. 36, 303–305 (1942).

    CAS  Google Scholar 

  • Krishnan, P. S.: Studies on apyrase. II. Some properties of potato apyrase. Arch. of Biochem. 20, 272–283 (1949).

    CAS  Google Scholar 

  • Kubo, H.: Acta phytochim. (Tokyo) 11, 195 (1939). Cited by Keilin and Wang 1945.

    CAS  Google Scholar 

  • Kubowitz, F.: Über die chemische Zusammensetzung der Kartoffeloxydase. Biochem. Z. 292, 221–229 (1937).

    CAS  Google Scholar 

  • Spaltung und Resynthese der Polyphenoloxydase und des Hämocyanins. Biochem. Z. 299, 32–57 (1938).

    Google Scholar 

  • Kunitz, M.: Crystalline inorganic pyrophosphatase isolated from baker’s yeast. J. Gen. Physiol. 35, 423–450 (1952).

    PubMed  CAS  Google Scholar 

  • Lajtha, A., P. Mela and H. Waelsh: Manganese dependent glutamyl transferase. J. of Biol. Chem. 205, 553–564 (1953).

    CAS  Google Scholar 

  • Lampit, L. H., and D. H. F. Clayson: The nature of ascorbic acid oxidase. I. A critique of the copper-protein theory. Biochemic. J. 39, Proc. XV (1945).

    Google Scholar 

  • Lardy, H. A.: The influence of inorganic ions on phosphorylation reactions I, pp. 477–499 in: Phosphorus metabolism. Symposium. McCollum-Pratt Institute Ed. W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press. 1951.

    Google Scholar 

  • Lardy, H. A., and J. A. Ziegler: The enzymatic synthesis of phosphopyruvate from pyruvate. J. of Biol. Chem. 159, 343–351 (1945).

    CAS  Google Scholar 

  • Lehninger, A. L.: Role of metal ions in enzyme systems. Physiologic. Rev. 30, 393–429 (1950).

    CAS  Google Scholar 

  • Lenhoff, H. M., and N. O. Kaplan: A cytochrome peroxidase from Pseudomonas fluorescens. Nature (Lond.) 172, 730–731 (1953).

    CAS  Google Scholar 

  • A cytochrome peroxidase from Pseudomonas fluorescens. J. of Biol. Chem. 1956.

    Google Scholar 

  • Lenhoff, H. M., D. J. D. Nicholas and N. O. Kaplan: Effects of oxygen, iron and molybdenum on alternative routes of electron transfer in Pseudomonas fluorescens. J. of Biol. Chem. 220, 983–995 (1956).

    CAS  Google Scholar 

  • Levy, H., and A. L. Schade: Studies in the respiration of the white potato. II. Terminal oxidase systems of the potato tuber respiration. Arch. of Biochem. 19, 273–286 (1948).

    CAS  Google Scholar 

  • Lieberman, I., A. Kornberg and E. S. Simms: Enzymatic synthesis of pyrimidine nucleotides. Orotidine 5 phosphate and Uridine 5 phosphate. J. of Biol. Chem. 215, 403–415 (1955a).

    CAS  Google Scholar 

  • Enzymatic Synthesis of nucleotide diphosphates and triphosphates. J. of Biol. Chem. 215, 429–440 (1955b).

    Google Scholar 

  • Loneragen, J., and D. I. Arnon: Molybdenum in the growth and metabolism of Chlorella. Nature (Lond.) 174, 459 (1954).

    Google Scholar 

  • Lotspeich, W. D., and R. A. Peters: The action of sulphydryl inhibitors upon isocitric dehydrogenase with especial reference to the behaviour of some trivalent arsenicals. Biochemic. J. 49, 704–709 (1951).

    CAS  Google Scholar 

  • Lovett-Janison, P. L., and J. M. Nelson: Ascorbic acid oxidase from summer crook-neck squash (C. pepo condensa). J. Amer. Chem. Soc. 62, 1409–1412 (1946).

    Google Scholar 

  • Lulla, B. S.: Studies in bacterial amylase. III. Influence of the concentration of the cultural nutrients on the formation of bacterial amylase. Biochim. et Biophysica Acta 7, 244–250 (1951).

    CAS  Google Scholar 

  • Lundegårdh, H.: Spectroscopic evidence of the participation of the cytochrome—cytochrome oxidase system in the active transport of salts. Nature (Lond.) 167, 71 (1951).

    Google Scholar 

  • Properties of the cytochrome system of living wheat roots. Nature (Lond.) 169, 1088–1091 (1952).

    Google Scholar 

  • Controlling effect of salts on the activity of the cytochrome oxidase. Nature (Lond.) 171, 477–478 (1953).

    Google Scholar 

  • On the oxidation of cytochrome f by light. Physiol. Plantarum (Copenh.) 7, 375–382 (1954).

    Google Scholar 

  • Mackler, B., H. R. Mahler and D. E. Green: Studies on metallo-flavoproteins. I. Xanthine oxidase, a molybdo-flavo protein. J. of Biol. Chem. 210, 149–164 (1954).

    CAS  Google Scholar 

  • Mac Vicar, R., and R. H. Burris: The relation of boron to certain plant oxidases. Arch. of Biochem. 17, 31–39 (1948).

    CAS  Google Scholar 

  • Mahler, H. R.: Butyryl CoA-dehydrogenase, a cupro-flavoprotein. J. Amer. Chem. Soc. 75, 3288–3289 (1953).

    CAS  Google Scholar 

  • Studies on the fatty acid oxidising system of animal tissues. IV. The prosthetic group of butyryl Co enzyme A dehydrogenase. J. of Biol. Chem. 206, 13–26 (1954).

    Google Scholar 

  • Nature and functions of metallo-flavoproteins. Adv. Enzymol. 17, 233–291 (1956).

    Google Scholar 

  • Mahler, H. R., and D. G. Elowe: DPNH cytochrome reductase, a ferro-flavoprotein. J. Amer. Chem. Soc. 75, 5769–5770 (1953).

    CAS  Google Scholar 

  • Studies on metallo-flavoproteins. II. The role of iron in diphosphopyridine nucleotide cytochrome c reductase. J. of Biol. Chem. 210, 165–179 (1954).

    Google Scholar 

  • Mahler, H. R., and J. L. Glenn: General significance of metallo-flavoproteins in electron transport, pp. 575–597 in Symposium on “Inorganic nitrogen nutrition,” ed. by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press. 1956.

    Google Scholar 

  • Mahler, H. R., B. Mackler, D. E. Green and R. M. Bock: Studies on metalloflavoproteins. III. Aldehyde oxidase, a molybdoflavoprotem. J. of Biol. Chem. 210, 465–480 (1954).

    CAS  Google Scholar 

  • Mallette, M. F.: The nature of the copper enzymes involved in tyrosine oxidation, pp. 48–75 in: Copper metabolism. Symposium. McCollum-Pratt Institute, Ed. W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1950.

    Google Scholar 

  • Mallette, M. F., and C. R. Dawson: On the nature of highly purified mushroom tyrosinase preparations. Arch. of Biochem. 23, 29–44 (1949).

    CAS  Google Scholar 

  • Malmstrom, B. G.: Interaction of manganous ions with enolase. Nature (Lond.) 171, 392–393 (1953a).

    CAS  Google Scholar 

  • The interaction of enolase with its activating metals. Arch. of Biochem. a. Biophysics 46, 345–363 (1953b).

    Google Scholar 

  • Mapson, L. W.: Function of ascorbic acid in plants. Vitamins a. Hormones 11, 1–28 (1953).

    CAS  Google Scholar 

  • Mapson, L. W., and D. R. Goddard: The reduction of glutathione by plant tissues. Biochemic. J. 49, 592–601 (1951).

    CAS  Google Scholar 

  • Mapson, L. W., F. A. Isherwood and Y. T. Chen: Biological synthesis of l-ascorbic acid: the conversion of l-galactono γ-lactone into l-ascorbic acid by plant mitochrondria. Biochemic. J. 56, 21–28 (1954).

    CAS  Google Scholar 

  • Marsh, P. B., and D. R. Goddard: Respiration and fermentation in the carrot. Daucus carota. II. Fermentation and the Pasteur effect. Amer. J. Bot. 26, 767–772 (1939).

    CAS  Google Scholar 

  • Martin, E. M., and R. K. Morton: Cytochrome b3 of microsomes from plant tissues. Nature (Lond.) 176, 113–114 (1955).

    CAS  Google Scholar 

  • Maschmann, E.: Über Bakterienproteasen. XII. Zur Kenntnis der Dipeptidasen anaerober Bakterien. Biochem. Z. 302, 332–368 (1939).

    CAS  Google Scholar 

  • Maskell, E. J., H. Evans and D. B. Murray: Report on cocoa research 1945–1951, pp. 53–64. Imp. Coll. Trop. Agr. St. Augustine, Trinidad 1953.

    Google Scholar 

  • Mason, H. S.: Structure and functions of the phenolase complex. Nature (Lond.) 177, 79–81 (1956).

    CAS  Google Scholar 

  • Massart, L., u. L. Vandendriessche: Aktivierung und Hemmung des Phosphatasen. Naturwiss. 28, 143 (1940).

    CAS  Google Scholar 

  • Mathews, M. B.: The oxidation of reduced diphosphopyridine nucleotide in green peas. J. of Biol. Chem. 189, 695–704 (1951).

    CAS  Google Scholar 

  • Mathews, M. B., and B. Vennesland: Enzymic oxidation of formic acid. J. of Biol. Chem. 186, 667–682 (1950).

    CAS  Google Scholar 

  • Maxwell, R. E.: Cytochrome oxidase in corn embryos. Plant Physiol. 25, 521–524 (1950).

    PubMed  CAS  Google Scholar 

  • Mc Elroy, W. D.: The role of trace elements in enzyme systems, pp. 262–286 in Symposium on Nutrition, Ed. R. M. Herriott. Baltimore: Johns Hopkins Press 1953.

    Google Scholar 

  • Mc Elroy, W. D., and A. Nason: Mechanism of action of micronutrient elements in enzyme systems. Annual Rev. Plant Physiol. 5, 1–30 (1954).

    CAS  Google Scholar 

  • Mc Nair Scott, D. B. and S. S. Cohen: The oxidative pathway of carbohydrate metabolism in Escherichia coli. Biochemic. J. 55, 23–33 (1953).

    Google Scholar 

  • Mee, S.: A study of carboxylase in soybean seeds. Arch. of Biochem. 22, 139–148 (1949).

    CAS  Google Scholar 

  • Merry, J., and D. R. Goddard: A respiratory study of barley grains and seedlings. Proc. Rochester Acad. Sci. 8, 28–44 (1941).

    Google Scholar 

  • Meyerhof, O.: The origin of the reaction of Harden and Young in cell free alcoholic fermentation. J. of Biol. Chem. 157, 105–119 (1945).

    CAS  Google Scholar 

  • Michaelis, L.: Oxidation-reduction systems of biological importance. VI. The mechanism of the catalytic effect of iron on the oxidation of cysteine. J. of Biol. Chem. 84, 777–787 (1929).

    CAS  Google Scholar 

  • Miller, G., and H. J. Evans: The influence of salts on pyruvate kinase from tissues of higher plants. Plant Physiol. 32, 346–354 (1957).

    PubMed  CAS  Google Scholar 

  • Miyaji, T., and J. P. Greenstein: Cation activation of desoxyribonuclease. Arch. of Biochem. a. Biophysics 32, 414–423 (1951).

    CAS  Google Scholar 

  • Morrison, J. F.: The purification of aconitase. Biochemic. J. 56, 99–105 (1954).

    CAS  Google Scholar 

  • Moyle, J., and M. Dixon: The identity of TPN linked isocitric dehydrogenase and oxalosuccinic decarboxylase. Biochim. et Biophysica Acta 16, 434–435 (1955).

    CAS  Google Scholar 

  • Mulder, E. G.: Importance of molybdenum in the nitrogen metabolism of micro-organisms and higher plants. Plant a. Soil, 1, 94–119 (1948).

    CAS  Google Scholar 

  • Mineral nutrition of plants. Annual Rev. Plant Physiol. 1, 1–24 (1950).

    Google Scholar 

  • Molybdenum in relation to growth of higher plants and micro-organisms. Plant a. Soil, 5, 368–415 (1954).

    Google Scholar 

  • Muntz, J. A.: The role of potassium and ammonium ions in alcoholic fermentation. J. of Biol. Chem. 171, 653–655 (1947).

    CAS  Google Scholar 

  • Naganna, B., A. Raman, B. Venugopal and C. E. Sripathi: Potato pyrophosphatases. Biochemic. J. 60, 215–223 (1955).

    CAS  Google Scholar 

  • Naganna, B., B. Venugopal and C. E. Sripathi: Occurrence of alkaline pyrophosphatase in vegetable tissues. Biochemic. J. 60, 224–225 (1955).

    CAS  Google Scholar 

  • Najjar, V. A.: The role of metal ions in enzyme systems, pp. 500–520 in McCollum-Pratt Symposium on Phosphorous metabolism, Vol. I, Ed. W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1951.

    Google Scholar 

  • Nason, A.: Effect of zinc deficiency on the synthesis of tryptophane by Neurospora extracts. Science (Lancaster, Pa.) 112, 111–112 (1950).

    CAS  Google Scholar 

  • Metabolism of micronutrient elements in higher plants. II. Effect of copper deficiency on the isocitric enzyme in tomato leaves. J. of Biol. Chem. 198, 643–653 (1952).

    Google Scholar 

  • Nason, A., R. G. Abraham and B. C. Averbach: The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochim. et Biophysica Acta 15, 160–161 (1954).

    Google Scholar 

  • Nason, A., and H. Evans: Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J. of Biol. Chem. 202, 655–673 (1953).

    CAS  Google Scholar 

  • Nason, A., N. O. Kaplan and S. P. Colowick: Changes in enzymatic constitution in zinc deficient Neurospora. J. of Biol. Chem. 188, 397–406 (1951).

    CAS  Google Scholar 

  • Nason, A., N. O. Kaplan and H. A. Oldewurtel: Futher studies of nutrient conditions affecting enzymatic constitution in Neurospora. J. of Biol. Chem. 201, 435–444 (1953).

    CAS  Google Scholar 

  • Nason, A., H. A. Oldewurtel and L. M. Propst: Role of micro-nutrient elements in the metabolism of higher plants. I. Changes in oxidative enzyme constitution of tomato leaves deficient in micronutrient elements. Arch. of Biochem. a. Biophysics 38, 1–13 (1952).

    CAS  Google Scholar 

  • Nason, A., W. D. Wosilait and A. J. Terrell: The enzymatic oxidation of reduced pyridine nucleotides by an oxidation product of ascorbic acid. Arch. of Biochem. a. Biophysics 48, 233–235 (1954).

    CAS  Google Scholar 

  • Neish, A. C.: Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochemic. J. 33, 300–308 (1939).

    CAS  Google Scholar 

  • Nelson, J. M.: Phenol oxidases and plant respiration, pp. 76–88 in: Copper Metabolism. Symposium of the McCollum-Pratt Institute, Ed. W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1950.

    Google Scholar 

  • Nelson, J. M., and C. R. Dawson: Tyrosinase. Adv. Enzymol. 4, 99–152 (1944).

    CAS  Google Scholar 

  • Newcomb, E. H.: Effect of auxin on ascorbic oxidase activity in tobacco pith cells. Proc. Soc. Exper. Biol. a. Med. 76, 504–509 (1951).

    CAS  Google Scholar 

  • The use of cultured tissue in a study of the metabolism controlling cell enlargement. Année Biol. 31, 195–214 (1955).

    Google Scholar 

  • Nicholas, D. J. D.: The use of fungi for determining trace metals in biological materials. Analyst (Lond.) 77, 629–642 (1952).

    CAS  Google Scholar 

  • Nicholas, D. J. D., and A. Nason: Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. J. Biol. Chem. 207, 353–360 (1954a).

    CAS  Google Scholar 

  • Molybdenum as an electron carrier in nitrate reductase action. Arch. of Biochem. a. Biophysics 51, 311–312 (1954b).

    Google Scholar 

  • Mechanisms of action of nitrate reductase from Neurospora. J. of Biol. Chem. 211, 183–197 (1954c).

    Google Scholar 

  • Role of molybdenum as a constituent of nitrate reductase from soya bean leaves. Plant Physiol. 30, 135–138 (1955a).

    Google Scholar 

  • Diphosphopyridine nucleotide reductase from Escherichia coli. J. Bacter. 69, 580–583 (1955b).

    Google Scholar 

  • Nicholas, D. J. D., A. Nason and W. D. Mc Elroy: Effect of molybdenum deficiency on nitrate reductase in cell free extracts of Neurospora and Aspergillus. Nature (Lond.) 172, 34–35 (1953).

    CAS  Google Scholar 

  • Molybdenum and nitrate reductase. I. Effect of molybdenum deficiency on the Neurospora enzyme. J. of Biol. Chem. 207, 341–351 (1954).

    Google Scholar 

  • Nicholas, D. J. D., and H. M. Stevens: The role of molybdenum in oxidation-reduction processes in Neurospora and Azotobacter. In: A symposium on inorganic nitrogen metabolism, pp. 178–183, Ed. by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1956.

    Google Scholar 

  • Nickerson, W. J.: Enzymatic control of cell division in microorganisms. Nature (Lond.) 162, 241–245 (1948).

    CAS  Google Scholar 

  • Nickerson, W. J., and N. J. W. van Rij: The effect of sulphydryl compounds, penicillin and cobalt on the cell division mechanism of yeast. Biochim. et Biophysica Acta 3, 461–475 (1949).

    CAS  Google Scholar 

  • Nickerson, W. J., and K. Zerahn: Accumulation of radioactive cobalt by dividing yeast cells. Biochim. et Biophysica Acta 3, 476–483 (1949).

    CAS  Google Scholar 

  • Ochoa, S.: Isocitric dehydrogenase and carbon dioxide fixation. J. of Biol. Chem. 159, 243–244 (1945).

    CAS  Google Scholar 

  • Biosynthesis of tricarboxylic acids by carbon dioxide fixation. III. Enzymatic mechanisms. J. of Biol. Chem. 174, 133–157 (1948).

    Google Scholar 

  • Ochoa, S., A. H. Mehler and A. Kornberg: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. I. Isolation and properties of an enzyme from pigeon liver catalysing the reversible oxidative decarboxylation of l-mahc acid. J. of Biol. Chem. 174, 979–1000 (1948).

    CAS  Google Scholar 

  • Ochoa, S., and E. Weisz-Tabori: Oxalosuccinic carboxylase. J. of Biol. Chem. 159, 245–246 (1945).

    CAS  Google Scholar 

  • Packer, L., and W. Vishniac: The specificity of a diphosphopyridine nucleotide linked hydrogenase. Biochim. et Biophysica Acta 17, 153–154 (1953).

    Google Scholar 

  • Paladini, A. C., R. Caputto, L. F. Leloir, R. E. Trucco and C. E. Cardini: The enzymatic synthesis of glucose 1–6 diphosphate. Arch. of Biochem 23, 55–66 (1949).

    CAS  Google Scholar 

  • Pinsent, J.: Molybdenum and formic dehydrogenase of bacteria. J. Gen. Microbiol. 3, Proc. XII (1949).

    Google Scholar 

  • The need for selenite and molybdate by members of the Coli-Aerogenes group of bacteria. Biochemic. J. 57, 10–16 (1954).

    Google Scholar 

  • Pirson, A.: Functional aspects of mineral nutrition of green plants. Annual Rev. Plant Physiol. 6, 71–114 (1955).

    CAS  Google Scholar 

  • Plaut, G. W. E., and H. A. Lardy: The oxalacetic decarboxylase of Azotobacter vinelandii. J. of Biol. Chem. 180, 13–27 (1949).

    CAS  Google Scholar 

  • Possingham, J. V.: The effect of molybdenum on the organic and inorganic phosphorus of plants. Austral. J. Biol. Sci. 7, 221–224 (1954).

    CAS  Google Scholar 

  • Powers, W. H., S. Lewis and C. R. Dawson: Preparation and properties of highly purified ascorbic acid oxidase. J. Gen. Physiol. 27, 167–180 (1944).

    PubMed  CAS  Google Scholar 

  • Pratt, R., and J. Dufrenoy: Cytochemical interpretation of the mechanism of penicillin action. Bacter. Rev. 12, 79–103 (1949).

    Google Scholar 

  • Quinlan-Watson, T. A. F.: Aldolase activity in zinc deficient plants. Nature (Lond.) 167, 1033–1034 (1951).

    CAS  Google Scholar 

  • The effect of zinc deficiency on the aldolase activity in the leaves of oats and clover. Biochemic. J. 53, 457–460 (1953).

    Google Scholar 

  • Ramakrishnan, C. V., and S. M. Martin: Isocitric dehydrogenase in Aspergillus niger. Arch. of Biochem. a. Biophysics 55, 403–407 (1955).

    CAS  Google Scholar 

  • Ramasarma, T., J. Ram and K. V. Giri: Phosphoglucomutase of green gram (Phaseolus radiatus). Arch. of Biochem. a. Biophysics 53, 167–173 (1954).

    CAS  Google Scholar 

  • Reed, H. S.: Effects of zinc deficiency on phosphate metabolism of the tomato plant. Amer. J. Bot. 33, 778–784 (1946).

    CAS  Google Scholar 

  • Reen, R. van: The influence of excessive dietary molybdenum on rat liver enzymes. Arch. of Biochem. a. Biophysics 53, 77–84 (1954).

    Google Scholar 

  • Reinert, J., and P. R. White: The cultivation in vitro of tumor tissues and normal tissues of Pinus glauca. Physiol. Plantarum (Copenh.) 9, 177–189 (1956).

    CAS  Google Scholar 

  • Renzo, E. C. de, P. G. Heytler and E. Kaleita: Further evidence that molybdenum is a co-factor of xanthine oxidase. Arch. of Biochem. a. Biophysics 49, 242–244 (1954).

    Google Scholar 

  • Renzo, E. C. de, E. Kaleita, P. G. Heytler, J. J. Oleson, B. L. Hutchings and J. H. Williams: Identification of the xanthine oxidase factor as molybdenum. Arch. of Biochem. a. Biophysics 45, 247–253 (1953).

    Google Scholar 

  • Richards, F. J., and E. Berner jr.: Physiological studies in plant nutrition. XVII. A general survey of the free amino acids of barley as affected by mineral nutrition with special reference to potassium supply. Ann. of Bot., N. S. 18, 15–33 (1954).

    CAS  Google Scholar 

  • Richert, P. A., and W. W. Westerfeld: Isolation and identification of the xanthine oxidase factor as molybdenum. J. of Biol. Chem. 203, 915–923 (1953).

    CAS  Google Scholar 

  • The relationship of iron to xanthine oxidase. J. of Biol. Chem. 209, 179–189 (1954).

    Google Scholar 

  • Roach, W. A., and C. Barclay: Nickel and multiple trace elements in agricultural crops. Nature (Lond.) 157, 696–697 (1946).

    Google Scholar 

  • Robinson, E. S., and J. M. Nelson: The tyrosine-tyrosinase reaction and aerobic plant respiration. Arch. of Biochem. 4, 111–117 (1944).

    CAS  Google Scholar 

  • Rosen, W. G.: Plant growth inhibition by streptomycin and its prevention by manganese. Proc. Soc. Exper. Biol. a. Med. 85, 385–388 (1954).

    CAS  Google Scholar 

  • Rosenberg, A. J., et G. Ducet: Activité cytochromoxydasique chez l’epinard. C. r. Acad. Sci. Paris 229, 391–393 (1949).

    CAS  Google Scholar 

  • Rudkin, G. O., and J. M. Nelson: Chlorogenic acid and respiration of sweet potato tubers. J. Amer. Chem. Soc. 69, 1470–1475 (1947).

    CAS  Google Scholar 

  • Sadasivan, V.: Biochemical studies on Penicillium chrysogenum. I. Phosphatase activity and the role of zinc in the production of penicillin. Arch. of Biochem. a. Biophysics 28, 100–110 (1950).

    CAS  Google Scholar 

  • Nature of phosphatase activity. Nature (Lond.) 169, 418–419 (1952).

    Google Scholar 

  • Saltmann, P.: Hexokinase in higher plants. J. of Biol. Chem. 200, 145–154 (1953).

    Google Scholar 

  • Sato, R., and F. Egami: Nitrate reductase. III. Bull. Chem. Soc. Japan 22, 137–143 (1949). (Chem. Abstr. 1950 [44], 6454.)

    CAS  Google Scholar 

  • Sato, R., and M. Niwa: Studies on nitrate reductase. VII. Reinvestigation on the identity of the enzyme with cytochrome b. Bull. Chem. Soc. Japan 25, 202–210 (1952).

    CAS  Google Scholar 

  • Saz, A., and R. B. Shi: Manganese reversal of aureomycin inhibition of bacterial cell-free nitroreductase. J. Amer. Chem. Soc. 75, 4626–4627 (1953).

    CAS  Google Scholar 

  • Schade, A. L., and H. Levy: Studies on the respiration of the white potato. III. Changes in the terminal oxidase pattern of potato tissue associated with time of suspension in water. Arch. of Biochem. 20, 211–219 (1949).

    CAS  Google Scholar 

  • Schales, O., and R. M. Roux: Iron and dihydroxyphenyl-alanine as activators for leucylglycine dipeptidase from yeast. J. of Biol. Chem. 182, 569–576 (1950).

    CAS  Google Scholar 

  • Schales, O., S. S. Schales and G. M. Schwarzenbach: Federat. Proc. 9, 223 (1950). Cited by Mc Elroy and Nason 1954.

    Google Scholar 

  • Schrecker, A. W., and A. Kornberg: Reversible enzymatic synthesis of flavinadeninedinucleotide. J. of Biol. Chem. 182, 795–803 (1950).

    CAS  Google Scholar 

  • Schultze, M. O.: The effect of deficiencies in copper and iron on the cytochrome oxidase of rat tissues. J. of Biol. Chem. 129, 729–737 (1939).

    CAS  Google Scholar 

  • Seifter, E.: The occurrence of co-enzyme A in plants. Plant Physiol. 29, 403–406 (1954).

    PubMed  CAS  Google Scholar 

  • Seitz, I. F.: Role of potassium and ammonium ions in the transfer of phosphate to the adenylic system. Biokhimiya 14, 134–140 (1949).

    Google Scholar 

  • Shorb, M. S.: Activity of vitamin B12 for the growth of Lactobacillus lactis. Science (Lancaster, Pa.) 107, 397–398 (1948).

    CAS  Google Scholar 

  • Shug, A. L., P. W. Wilson, D. E. Green and M. R. Mahler: The role of molybdenum and flavin in hydrogenase. J. Amer. Chem. Soc. 76, 3355–3356 (1954).

    CAS  Google Scholar 

  • Sibley, P. M., and I. G. Wood: The nature of carbonic anhydrase from plant sources. Austral. J. Sci. Res. B 4, 500–510 (1951).

    Google Scholar 

  • Sideris, C. P., and H. Y. Young: Growth and chemical composition of Ananas comosus (L.) Merr. in solution cultures with different iron-manganese rations. Plant Physiol. 24, 416–440 (1949).

    PubMed  CAS  Google Scholar 

  • Singer, T. P., and E. B. Kearney: The non-enzymatic reduction of cytochrome c by pyridine nucleotides and its catalysis by various flavins. J. of Biol. Chem. 183, 409–429 (1950).

    CAS  Google Scholar 

  • Solubilization, assay and purification of succinic dehydrogenase. Biochim. et Biophysica Acta 15, 151–153 (1954).

    Google Scholar 

  • Slater, E. C.: A respiratory catalyst required for the reduction of cytochrome c by cytochrome b. Biochemic. J. 45, 14–30 (1949).

    CAS  Google Scholar 

  • The components of the dihydro-cozymase system. Biochemic. J. 46, 484–499 (1950).

    Google Scholar 

  • Smith, E. L., N. C. Davis, E. Adams and D. H. Spackman: The specificity and mode of action of two metal-peptidases, pp. 291–318 in: The mechanism of Enzyme Action. Symposium. McCollum-Pratt Institute, Ed. W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1954.

    Google Scholar 

  • Smith, J. D.: The concentration and distribution of haemoglobin in the root nodules of leguminous plants. Biochemic. J. 44, 585–591 (1949a).

    CAS  Google Scholar 

  • Haemoglobin and the oxygen uptake of leguminous root nodules. Biochemic. J. 44, 591–598 (1949b).

    Google Scholar 

  • Snoke, J. C.: Isolation and properties of yeast glutathione synthetase. J. of Biol. Chem. 213, 813–824 (1955).

    CAS  Google Scholar 

  • Speck, J. F.: The effect of cations on the decarboxylation of oxalacetic acid. J. of Biol. Chem. 178, 315–324 (1949).

    CAS  Google Scholar 

  • Spencer, D.: The effect of molybdate on the activity of tomato acid phosphatases. Austral. J. Biol. Sci. 7, 151–160 (1954).

    CAS  Google Scholar 

  • Spencer, D., and J. G. Wood: The role of molybdenum in nitrate reduction in higher plants. Austral. J. Biol. Sci. 7, 425–434 (1955).

    Google Scholar 

  • Stadtman, E. R.: The purification and properties of phosphotransacetylase. J. of Biol. Chem. 196, 527–534 (1952).

    CAS  Google Scholar 

  • Steinberg, R. A.: Effects of nitrogen compounds and trace elements on growth of Aspergillus niger. J. Agricult. Res. 59, 731–748 (1939).

    CAS  Google Scholar 

  • Steinberger, R., and F. H. Westheimer: The metal ion-catalysed decarboxylation of dimethyl-oxaloacetic acid. J. Amer. Chem. Soc. 71, 4158–4159 (1949).

    CAS  Google Scholar 

  • Metal ion-catalysed decarboxylation: a model for an enzyme system. J. Amer. Chem. Soc. 73, 429–435 (1951).

    Google Scholar 

  • Stern, J. R., B. Shapiro and S. Ochoa: Synthesis and breakdown of citric acid with crystalline condensing enzyme. Nature (Lond.) 166, 403–404 (1950).

    CAS  Google Scholar 

  • Stickland, L. H.: The activation of phosphoglucomutase by metal ions. Biochemic. J. 44, 190–197 (1949).

    CAS  Google Scholar 

  • Stock, C. C., M. E. Perkins and L. J. Hellerman: Activation of enzymes. IV. The jackbean arginolytic enzyme. J. of Biol. Chem. 125, 753–769 (1938).

    CAS  Google Scholar 

  • Stotz, E., A. M. Altschul and T. R. Hogness: The cytochrome c-cytochrome oxidase complex. J. of Biol. Chem. 124, 745–754 (1938).

    CAS  Google Scholar 

  • Stotz, E., C. J. Harrer and C. G. King: A study of “ascorbic acid oxidase” in relation to copper. J. of Biol. Chem. 119, 511–522 (1937).

    CAS  Google Scholar 

  • Stotz, E., G. J. Harrer, M. O. Schultze and C. G. King: The oxidation of ascorbic acid in the presence of guinea pig liver. J. of Biol. Chem. 122, 407–418 (1938).

    CAS  Google Scholar 

  • Stotz, E., A. E. Sidwell jr. and T. R. Hogness: The role of the cytochromes in the action of “indophenol oxidase”. J. of Biol. Chem. 124, 733–744 (1938).

    CAS  Google Scholar 

  • Stumpf, P. K.: Pyruvic oxidase of Proteus vulgaris. J. of Biol. Chem. 159, 529–544 (1945).

    CAS  Google Scholar 

  • Carbohydrate metabolism in higher plants. I. Pea aldolase. J. of Biol. Chem. 176, 233–241 (1948).

    Google Scholar 

  • Carbohydrate metabolism in higher plants. III. Breakdown of fructose diphosphate by pea extracts. J. of Biol. Chem. 182, 261–272 (1950).

    Google Scholar 

  • Stumpf, P. K., and W. D. Loomis: Observations on a plant amide enzyme system requiring manganese and phosphate. Arch. of Biochem. 25, 451–453 (1950).

    CAS  Google Scholar 

  • Stumpf, P. K., W. D. Loomis and C. Mitchelson: Amide metabolism in higher plants. I. Preparation and properties of a glutamyl transphorase from pumpkin seedling. Arch. of Biochem. 30, 126–137 (1951).

    CAS  Google Scholar 

  • Sumner, J. B., and G. F. Somers: Chemistry and methods of enzymes, 3rd ed. New York: Academic Press 1953.

    Google Scholar 

  • Swedin, B., and H. Theorell: Dioxymaleic acid oxidase action of peroxidases. Nature (Lond.) 145, 71–72 (1940).

    CAS  Google Scholar 

  • Tang, Yu-Wei, and J. Bonner: The enzymatic inactivation of indolacetic I. Some characteristics of the enzyme contained in pea seedlings. Arch. of Biochem. 13, 11–25 (1947).

    CAS  Google Scholar 

  • Taniguchi, S., R. Sato and F. Egami: The enzymatic mechanism of nitrate and nitrite metabolism in bacteria, pp. 87–108 in Symposium on “Inorganic nitrogen metabolism,” ed. by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Univ. Press 1956.

    Google Scholar 

  • Theorell, H.: Ark. Kemi, Mmeral. Geol. B 14, No 20, 1 (1940). Cited by Sumner and Somers 1953.

    Google Scholar 

  • Theorell, H., u. B. Swedin: Mangan als Aktivator der Dioxymaleinsäureoxydase. Naturwiss. 27, 95 (1939).

    CAS  Google Scholar 

  • Thimann, K. V., C. S. Yocum and D. P. Hackett: Terminal oxidases and growth in plant tissues. III. Terminal oxidation in potato tuber tissue. Arch. of Biochem. a. Biophysics 53, 239–257 (1954).

    CAS  Google Scholar 

  • Thoai, N. V., J. Roche et M. Rogers: Inactivation et réactivation complètes de la Phosphomonoestérase alcaline et interchangibilité des metaux actifs. Biochim. et Biophysica Acta 1, 61–76 (1943).

    Google Scholar 

  • Thoai, N. V., J. Roche et J. M. Verrier: Sur les complexes cobaltiques de l’arginase hépatique et de l’argine ou d’inhibiteurs concurrents de celle ci. C. r. Acad. Sci. Paris 236, 2008–2010 (1953).

    CAS  Google Scholar 

  • Tissières, A.: Reconstruction of laccase from its protein and copper. Nature (Lond.) 162, 340–341 (1948).

    Google Scholar 

  • Constitution and properties of laccase. Nature (Lond.) 163, 480 (1949).

    Google Scholar 

  • Tissières, A., and H. K. Mitchell: Cytochromes and respiratory activities in some slow growing strains of Neurospora. J. of Biol. chem. 208, 241–249 (1954).

    Google Scholar 

  • Tolmach, L. J.: Effects of triphosphopyridine nucleotide upon oxygen evolution and carbon dioxide fixation by illuminated chloroplasts. Nature (Lond.) 167, 946–948 (1951).

    CAS  Google Scholar 

  • Totter, J. R., W. T. Burnett jr., R. A. Monroe, I. B. Whitney and C. L. Comar: Evidence that molybdenum is a non-dialysible component of xanthine oxidase. Science (Lancaster, Pa.) 118, 555 (1953).

    CAS  Google Scholar 

  • Trucco, R. F., R. Caputto, L. F. Leloir and N. Mittelman: Galactokinase. Arch. of Biochem. 18, 137–146 (1948).

    CAS  Google Scholar 

  • Tsui, Chen: The role of zinc in auxin synthesis in the tomato plant. Amer. J. Bot., 35, 172–178 (1948).

    CAS  Google Scholar 

  • Utter, M. F., and C. F. Werkman: Effect of metal ions on the reactions of phosphopyruvate by Escherichia coli. J. of Biol. Chem. 146, 289–300 (1942).

    CAS  Google Scholar 

  • Vallee, B. L., and F. L. Hoch: Yeast alcohol dehydrogenase, a zinc metallo-enzyme. J. Amer. Chem. Soc. 77, 821–822 (1955).

    CAS  Google Scholar 

  • Vallee, B. L., F. L. Hoch, S. J. Adelstein and W. E. L. Waiker: Pyridine nucleotide-dependant metallo-dehydrogenases. J. Amer, Chem. Soc. 78, 5879–5883 (1956).

    CAS  Google Scholar 

  • Veiga-Salles, J. B., I. Harary, R. F. Barfi and S. Ochoa: Enzymatic incorporation of carbon dioxide in oxaloacetate in pigeon liver. Nature (Lond.) 165, 675–676 (1950).

    CAS  Google Scholar 

  • Veiga-Salles, J. B., and S. Ochoa: Biosynthesis of dicarboxyhc acids by carbon dioxide fixation. II. Further study of the properties of the malic enzyme of pigeon liver. J. of Biol. Chem. 187, 849–861 (1950).

    CAS  Google Scholar 

  • Vennesland, B.: The β-carboxylases of plants. III. The distribution of oxaloacetic carboxylase in plant tissues. J. of Biol. Chem. 178, 591–597 (1949).

    CAS  Google Scholar 

  • Vennesland, B., J. Ceithamel and M. C. Gollub: The fixation of carbon dioxide in a plant tricarboxylic acid system. J. of Biol. Chem. 171, 445–446 (1947).

    CAS  Google Scholar 

  • Vennesland, B., E. A. Evans jr. and A. M. Francis: The action of metmyoglobin, oxygen and manganese on oxaloacetic acid. J. of Biol. Chem. 163, 573–574 (1946).

    CAS  Google Scholar 

  • Vennesland, B., and R. Z. Felsher: Oxaloacetic and pyruvic carboxylases in some dicotyledonous plants. Arch. of Biochem. 11, 279–306 (1946).

    CAS  Google Scholar 

  • Vennesland, B., M. C. Gollub and J. F. Speck: The carboxylases of plants. I. Some properties of oxaloacetic carboxylase and its quantitative assay. J. of Biol. Chem. 178, 301–314 (1949).

    CAS  Google Scholar 

  • Virtanen, A.: The biology and chemistry of nitrogen fixation by legume bacteria. Biologic. Rev. 22, 239–269 (1947).

    CAS  Google Scholar 

  • Vishniac, W., and S. Ochoa: Photochemical reduction of pyridine nucleotides by spinach grana and coupled carbon dioxide fixation. Nature (Lond.) 167, 768–769 (1951).

    CAS  Google Scholar 

  • Phosphorylation coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. of Biol. Chem. 198, 501–506 (1952).

    Google Scholar 

  • Wagenknecht, A. C., and R. H. Burris: Indoleacetic acid inactivating enzymes from bean roots and pea seedlings. Arch. of Biochem. 25, 30–53 (1950).

    CAS  Google Scholar 

  • Wang, T. P.: Specific 5′-nucleotidase from a soil bacterium. J. Bacter. 68, 128 (1954).

    CAS  Google Scholar 

  • Wang, T. P., and N. O. Kaplan: Kinases for the synthesis of co-enzyme A and triphosphopyridine nucleotide. J. of Biol. Chem. 206, 311–325 (1954).

    CAS  Google Scholar 

  • Warburg, O., u. W. Christian: Isolierung und Kristallisation des Gärungsferments Enolase. Biochem. Z. 310, 384–421 (1942a).

    CAS  Google Scholar 

  • Wirkungs-gruppe des Gärungsferments Zymohexase. Biochem. Z. 311, 209–210 (1942b).

    Google Scholar 

  • Isolierung und Kristallisation des Gärungsferments Zymohexase. Biochem. Z. 314, 149–176 (1943).

    Google Scholar 

  • Waring, W. S., and C. H. Werkmann: Iron deficiency in bacterial metabolism. Arch. of Biochem. 4, 75–87 (1944).

    CAS  Google Scholar 

  • Waygood, E. R.: Physiological and biochemical studies in plant metabolism. II. Respiratory enzymes in wheat. Canad. J. Res. 28, 7–62 (1950).

    Google Scholar 

  • Waygood, E. R., and K. A. Clendenning: Carbonic anhydrase in green plants. Canad. J. Res. C 28, 673–689 (1950).

    Google Scholar 

  • Waygood, E. R., and C. A. Mac Lachlan: The effect of catalase, riboflavin and light on the oxidation of indoleacetic acid. Physiol. Plantarum (Copenh.) 9, 607–617 (1956).

    CAS  Google Scholar 

  • Waygood, E. R., A. Oaks and G. A. Mac Lachlan: On the mechanism of indoleacetic acid oxidation by wheat leaves. Canad. J. Bot. 34, 54–59 (1956a).

    CAS  Google Scholar 

  • The enzymatically catalysed oxidation of indoleacetic acid. Canad. J. Bot. 34, 905–926 (1956b).

    Google Scholar 

  • Webb, M. M., H. M. Lenhofp and N. O. Kaplan: The function of inorganic iron in the reduction of cytochrome c. Biochim. et Biophysica Acta 14, 298–299 (1954).

    Google Scholar 

  • Webster, G. C.: The occurrence of a cytochrome oxidase in the tissues of higher plants. Amer. J. Bot. 38, 379–445 (1952).

    Google Scholar 

  • Peptide bond synthesis in higher plants. I. The synthesis of glutathione. Arch. of Biochem. a. Biophysics 47, 241–250 (1953).

    Google Scholar 

  • Webster, G. C., and J. E. Varner: Peptide bond synthesis in higher plants. II. Studies on the mechanism of synthesis of γ-glutamyl cysteine. Arch. of Biochem. a. Biophysics 52, 21–32 (1954).

    Google Scholar 

  • Peptide bond synthesis in higher plants. III. The formation of glutathione from γ-glutamyl cysteine. Arch. of Biochem. and Biophysics. 55, 95–103 (1955).

    Google Scholar 

  • Weeks, D. C., and R. M. Robertson: Studies in the metabolism of plant cells. 8. Dependence of salt accumulation and salt respiration on the cytochrome system. Austral. J. Sci. Res. B 3, 487–500 (1950).

    Google Scholar 

  • Weil-Malherbe, H., and R. H. Green: The catalytic of molybdate on the hydrolysis of organic phosphates. Biochemic. J. 49, 286–292 (1951).

    CAS  Google Scholar 

  • Weinstein, L. H., and W. R. Robbins: The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol. 30, 27–32 (1955).

    PubMed  CAS  Google Scholar 

  • Weinstein, L. H., W, R. Robbins and W. W. Wainio: Assay of cytochrome oxidase activity of sunflower leaf tissue in relation to ph value and cation concentration of the buffer. Plant Physiol. 29, 388–409 (1954).

    Google Scholar 

  • Wildman, E. G., and J. Bonner: The proteins of green leaves. I. Isolation, enzymatic properties and auxin content of spinach cytoplasmic proteins. Arch. of Biochem. 14, 381–413 (1947).

    CAS  Google Scholar 

  • Winfield, M. E.: The role of boron in plant metabolism. II. An account of some attempts to isolate boron complexes from plant tissues. Austral. J. Exper. Biol. a. Med. Sci. 23, 111–117 (1945).

    CAS  Google Scholar 

  • Wolfe, M.: The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. II. A more detailed study of molybdenum in nitrate assimilation. Ann. of Bot., N. S. 18, 309–325 (1954).

    CAS  Google Scholar 

  • Wood, I. G., and P. M. Sibley: Carbonic anhydrase activity in plants in relation to zinc content. Austral. J. Sci. Res. B 5, 244–255 (1952).

    CAS  Google Scholar 

  • Wosilait, W. D., and A. Nason: Pyridine nucleotide-quinone reductase. I. Purification and properties of the enzyme from pea seeds. J. of Biol. Chem. 206, 255–270 (1954).

    CAS  Google Scholar 

  • Wosilait, W. D., A. Nason and A. J. Terrell: Pyridme nucleotidequinone reductase. II. Role in electron transport. J. of Biol. Chem. 206, 271–282 (1954).

    CAS  Google Scholar 

  • Zittle, C. A.: Reaction of borate with substances of biological interest. Adv. Enzymol. 12, 493–527 (1951).

    CAS  Google Scholar 

  • Zucker, M., and A. Nason: A pyridine nucleotide hydroxylamine reductase from Neurospora, J. of Biol. Chem. 213, 463–478 (1955).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin . Göttingen . Heidelberg

About this chapter

Cite this chapter

Hewitt, E.J. (1958). The role of mineral elements in the activity of plant enzyme systems. In: Adriani, M.J., et al. Die Mineralische Ernährung der Pflanze / Mineral Nutrition of Plants. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94729-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94729-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94730-8

  • Online ISBN: 978-3-642-94729-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics