Skip to main content
  • 365 Accesses

Abstract

The molecules of all substances are in motion and possess free (kinetic) energy. From the laws of thermodynamics, if the molecules of any one substance possess more aggregate free energy per unit volume in one region of a medium than in

Diffusion of a substance across a membrane from a region of higher concentration to one of lower concentration (from Scarth and Lloyd).

another, there will be a tendency for a transfer of some of the energy. This may be by collision or by a net movement of molecules. The net movement of molecules is known as diffusion (Getman and Daniels, Scarth and Lloyd. The greater free energy or activity may be due to 1. a higher concentration of molecules of the same average free energy or 2. a greater average free energy of the molecules (i.e. a higher temperature), or to both factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Brooks, S. C., and M. M. Brooks: The permeability of living cells. Protoplasma-Monogr. 19 (1941).

    Google Scholar 

  2. Davson, H., and J. F. Danielli: The permeability of natural membranes, Cambridge: Univ. Press 1943.

    Google Scholar 

  3. Getman, F. H., and F.Daniels: Outlines of theoretical chemistry. New York: John Wiley & Sons 1937.

    Google Scholar 

  4. Harris, J. A.: Phvsico-chemical properties of plant saps. Univ. of Minnesota Press 1934.

    Google Scholar 

  5. Killian, C., et G. Lemée: Étude sociologique, morphologique et écologique de quelques halophytes sahariens. Rev. gén. Bot. 55, 374–402 (1948); 56, 28–48 (1949).

    Google Scholar 

  6. Levitt, J.: The osmotic equivalent and osmotic potential difference of plant cells. Physiol. Plantarum 4, 446–448 (1951).

    Article  Google Scholar 

  7. Levitt, J.: Further remarks on the thermodynamics of active (non-osmotic) water absorption. Physiol. Plantarum 6, 240–252 (1953).

    Article  Google Scholar 

  8. Overstreet, R., and L. Jacobson: Mechanisms of ion absorption bv roots. Annual Rev. Plant Physiol. 3, 189–206 (1952).

    Article  Google Scholar 

  9. Scarth, G. W., and F. E. Lloyd: An elementary course in general physiology. New York: John Wiley & Sons 1930.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Levitt, J. (1956). Osmosis and permeability. In: Adriani, M.J., et al. Pflanze und Wasser / Water Relations of Plants. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94678-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94678-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94679-0

  • Online ISBN: 978-3-642-94678-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics