Skip to main content

Abstract

The cell-to-cell movement of water in plants, insofar as it is motivated by osmotic and imbibitional mechanisms, can be adequately interpreted only in terms of the three physically distinct quantities of osmotic pressure (OP), turgor pressure (TP), and diffusion pressure deficit (DPD). No one of these three quantities alone adequately characterizes the water relations of a plant cell insofar as they can be interpreted on the basis of a diffusional mechanism. The magnitude of all three of them must be known for the complete evaluation of the water relations of a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Algeus, S.: Views on turgor pressure and wall pressure. Physiol. Plantarum 4, 535–541 (1951).

    Article  Google Scholar 

  • Arcichovskij, V., et al.: Untersuchungen über die Saugkraft der Pflanzen, I–V. Planta (Berl.) 14, 517–565 (1931).

    Article  Google Scholar 

  • Askenasy, E.: Beiträge zur Erklärung des Saftsteigens. Verh. naturhist.-med. Ver. Heidelberg 5, 429–448 (1897).

    Google Scholar 

  • Beck, W. A.: Osmotic pressure, osmotic value, and suction tension. Plant Physiol. 3, 413–440 (1928).

    Article  PubMed  CAS  Google Scholar 

  • Bode, H. R.: Beiträge zur Dynamik der Wasserbewegung in den Gefäßpflanzen. Jb. wiss. Bot. 62, 92–127 (1923).

    Google Scholar 

  • Brooks, S. C.: The standardization of osmotic pressure as a term. Science (Lancaster, Pa.) 92, 428–429 (1940).

    CAS  Google Scholar 

  • Brooks, S. C., and Matilda M. Brooks: The permeability of living cells. Berlin: Gebrüder Bornträger 1941.

    Google Scholar 

  • Broyer, T. C.: The movement of materials into plants. Part I. Osmosis and the movement of water into plants. Bot. Review 13, 1–58 (1947).

    Article  CAS  Google Scholar 

  • On the theoretical interpretation of turgor pressure. Plant Physiol. 25, 135–139 (1950).

    Google Scholar 

  • Burström, H.: A theoretical interpretation of the turgor pressure. Physiol. Plantarum 1, 57–64 (1948).

    Article  Google Scholar 

  • Chu, Cheen-Ren: Der Einfluß des Wassergehaltes der Blätter der Waldbäume auf ihre Lebensfähigkeit usw. Flora (Jena) 130, 384–437 (1936).

    Google Scholar 

  • Crafts, A. S.: Solute transport in plants. Science (Lancaster, Pa.) 90, 337–338 (1939).

    CAS  Google Scholar 

  • Crafts, A. S., H. B. Currier and C. R. Stocking: Water in the physiology of plants. Waltham, Massachusetts: The Chronica Botanica Co. 1949.

    Google Scholar 

  • Curtis, O. F.: Vapor pressure gradients, water distribution in fruits and so-called infra-red injury. Amer. J. Bot. 24, 705–710 (1937).

    Article  Google Scholar 

  • Curtis, O. F., and H. T. Scofield: A comparison of the osmotic concentrations of supplying and receiving tissues, and its bearing on the Münch hypothesis of the translocation mechanism. Amer. J. Bot. 20, 502–512 (1933).

    Article  Google Scholar 

  • Dixon, H. H.: Transpiration and the ascent of sap in plants.. London: Macmillan & Co. 1914.

    Book  Google Scholar 

  • Edlefsen, N. E.: Some thermodynamic aspects of the use of soil moisture by plants. Trans. Amer. Geophysic. Union, part III 22, 917–926 (1941).

    Google Scholar 

  • Edlefsen, N. E., and A. B. C. Anderson: Thermodynamics of soil moisture. Hilgardia 15, 31–298 (1943).

    CAS  Google Scholar 

  • Engmann, K. P.: Studien über die Leistungsfähigkeit der Wassergewebe sukkulenter Pflanzen. Beih. bot. Zbl. A 52, 381–414 (1934).

    Google Scholar 

  • Ernest, E. C. M.: Suction-pressure gradients and the measurement of suction pressure. Ann. of Bot. 45, 717–731 (1931).

    Google Scholar 

  • The water relations of the plant cell. J. Linnean Soc. Lond. Bot. 49, 495–502 (1934).

    Google Scholar 

  • Fürth, R.: On the theory of the liquid state. I. The statistical treatment of the thermodynamics of liquids by the theory of holes. Proc. Cambridge Philos. Soc. 37, 252–275 (1941).

    Article  Google Scholar 

  • Haines, F. M.: The relation between cell dimensions, osmotic pressure and turgor pressure. Ann. of Bot. 14, 385–394 (1950).

    CAS  Google Scholar 

  • An analysis of turgor and turgor pressure. Ann. of Bot. 17, 629–640 (1953).

    Google Scholar 

  • Haldane, J. S.: The extension of the gas laws to liquids and solids. Biochemie. J. 12, 464–498 (1918).

    CAS  Google Scholar 

  • Herrick, E. M.: Seasonal and diurnal variations in the osmotic values and suction tension values in the aerial portions of Ambrosia trifida. Amer. J. Bot. 20, 18–34 (1933).

    Article  Google Scholar 

  • Höfler, K.: Ein Schema für die osmotische Leistung der Pflanzenzelle. Ber. dtsch. bot. Ges. 38, 288–298 (1920).

    Google Scholar 

  • Holle, H.: Untersuchungen über Welken, Vertrocknen und Wiederstraffwerden. Flora (Jena) 108, 73–126 (1915).

    Google Scholar 

  • Huber, B.: Wasserumsatz und Stoffbewegungen. Fortschr. Bot. 12, 185–215 (1948).

    Google Scholar 

  • Hygen, G., and Julie Kjennerud: Osmotic relations during cell expansion. Physiol. Plantarum 5, 171–182 (1952).

    Article  Google Scholar 

  • Kerr, T., and D.B. Anderson: Osmotic quantities in growing cotton bolls. Plant Physiol. 19, 338–349 (1944).

    Article  PubMed  CAS  Google Scholar 

  • Kramer, P. J.: The absorption of water by root systems of plants. Amer. J. Bot. 19, 148–164 (1932).

    Article  Google Scholar 

  • Kramer, P. J., and H. B. Currier: Water relations of plant cells and tissues. Annual Rev. Plant Physiol. 1, 265–284 (1950).

    Article  Google Scholar 

  • Lewis, G. N., and M. Randall: Thermodynamics. New York: McGraw-Hill Book Co. 1923.

    Google Scholar 

  • Levitt, J.: Toward a clearer concept of osmotic quantities in plant cells. Science (Lancaster, Pa.) 113, 228–231 (1951a).

    CAS  Google Scholar 

  • The osmotic equivalent and osmotic potential difference of plant cells. Physiol. Plantarum 4, 446–448 (1951b).

    Google Scholar 

  • Li, Tsi-Tung: Effect of climatic factors on suction force. Quart. Rev. Biol. 4, 401–414 (1929).

    Article  Google Scholar 

  • Mac Dougal, D. T.: Studies in tree growth by the dendrographic method. Carnegie Instn. Wash. Publ. 1936, No 462.

    Google Scholar 

  • Mac Dougal, D. T., J. B. Overton and G. M. Smith: The hydrostatic-pneumatic system of certain trees; movements of liquids and gases. Carnegie Instn. Wash. Publ. 1929, No 397.

    Google Scholar 

  • Meyer, B. S.: The water relations of plant cells. Bot. Review 4, 531–547 (1938).

    Article  CAS  Google Scholar 

  • A critical evaluation of the terminology of diffusion phenomena. Plant Physiol. 20, 142–164 (1945).

    Google Scholar 

  • Meyer, B. S., and A.M.Wallace: A comparison of two methods of determining the diffusion pressure deficit of potato tuber tissue. Amer. J. Bot. 28, 838–843 (1941).

    Article  Google Scholar 

  • Molz, F. J.: A study of suction force by the simplified method. I, II. Amer. J. Bot. 13, 433–501 (1926).

    Article  Google Scholar 

  • Oppenheimer, H. R.: Kritische Betrachtungen zu den Saugkraftmessungen von Ursprung und Blum. Ber. dtsch. bot. Ges. 48, 130–140 (1930).

    Google Scholar 

  • Untersuchungen zur Kritik der Saugkraftmessungen. Planta (Berl.) 18, 525–549 (1932).

    Google Scholar 

  • Remarks on two recent contributions concerning methods used in plant physiology. Palestine J. Bot. a. Hort. Sci. 1, 84–93 (1936).

    Google Scholar 

  • Renner, O.: Experimentelle Beiträge zur Kenntnis der Wasserbewegung. Flora (Jena) 103, 171–247 (1911).

    Google Scholar 

  • Theoretisches und Experimentelles zur Kohäsionstheorie der Wasserbewegung. Jb. wiss. Bot. 56, 617–667 (1915).

    Google Scholar 

  • Richards, L. A., and L. R. Weaver: Fifteen-atmosphere percentage as related to the permanent wilting percentage. Soil Sci. 56, 331–339 (1943).

    Article  CAS  Google Scholar 

  • Moisture retention by some irrigated soils as related to soil-moisture tension. J. Agricult. Res. 69, 215–235 (1944).

    Google Scholar 

  • Russell, M. B.: Soil moisture sorption curves for four Iowa soils. Proc. Soil Sci. Soc. Amer. 69, 51–54 (1939).

    Google Scholar 

  • Scott, A. F., D. P. Shoemaker, K. N. Tanner and J. G. Wendel: Study of the Berthelot method for detennining the tensile strength of a liquid. J. Chem. Phys. 16, 495–502 (1948).

    Article  CAS  Google Scholar 

  • Shull, C.A.: Suction force of plant cells. Bot. Gaz. 83, 213–214 (1927).

    Article  Google Scholar 

  • Absorption of water by plants and the forces involved. J. Amer. Soc. Agron. 22, 459–471 (1930)

    Google Scholar 

  • Atmospheric humidity and temperature in relation to the water system of plants and soils. Plant Physiol. 14, 401–422 (1939).

    Google Scholar 

  • Spanner, D. C.: The dynamics of cell expansion by turgor. Ann. of Bot. 16, 133–136 (1952).

    Google Scholar 

  • Steward, F. C., P. R. Stout and C. Preston: The balance sheet of metabolites for potato discs showing the effect of salts and dissolved oxygen on metabolism at 23° C. Plant Physiol. 15, 409–447 (1940).

    Article  PubMed  CAS  Google Scholar 

  • Stiles, W.: The suction pressure of the plant cell. Biochemie. J. 16, 727–728 (1922).

    CAS  Google Scholar 

  • Stocking, C. R.: The calculation of tensions in Cucurbita pepo. Amer. J. Bot. 32, 126–134 (1945).

    Article  Google Scholar 

  • Tamiya, H.: Zur Theorie der Turgordehnung und über den funktionellen Zusammenhang zwischen den einzelnen osmotischen Zustandsgrößen. Cytologia 8, 542–562 (1938).

    Article  Google Scholar 

  • Temperely, H. N. V.: The behaviour of water under hydrostatic tension. II. Proc. Phys. Soc. London 58, 436–443 (1946).

    Article  Google Scholar 

  • The behaviour of water under hydrostatic tension. III. Proc. Phys. Soc. London 59, 199–208 (1947).

    Google Scholar 

  • Temperely, H. N. V., and L. G. Chambers: The behaviour of water under hydrostatic tension. I. Proc. Phys. Soc. London 58, 420–436 (1946).

    Article  Google Scholar 

  • Thoday, D.: On turgescence and the absorption of water by the cells of plants. New Phytologist 17, 108–113 (1918).

    Article  Google Scholar 

  • On the behaviour during drought of leaves of two cape species of Passerina, with some notes on their anatomy. Ann. of Bot. 35, 585–601 (1921).

    Google Scholar 

  • On the water relations of plant cells. Ann. of Bot. 14, 1–6 (1950).

    Google Scholar 

  • Turgor pressure and wall pressure. Ann. of Bot. 16, 129–131 (1952).

    Google Scholar 

  • Ursprung, A.: Ãœber die Kohäsion des Wassers im Farnannulus. Ber. dtsch. bot. Ges. 33, 153–162 (1915).

    CAS  Google Scholar 

  • Zur Kenntnis der Saugkaft. VII. Eine neue vereinfachte Methode zur Messung der Saugkraft. Ber. dtsch. bot. Ges. 41, 338–343 (1923).

    Google Scholar 

  • Osmotic quantities of plant cells in given phases. Plant Physiol. 10, 115–133 (1935).

    Google Scholar 

  • Die Messung der osmotischen Zustandgrößen pflanzlicher Zellen und Gewebe. In Handbuch der biologischen Arbeitsmethoden von E. Abderhalden, Abt. XI, Teil 4, H. 7, S. 1109–1572. 1938.

    Google Scholar 

  • Ãœber den Einfluß von Temperaturdifferenzen auf die Osmose. Protoplasma (Berl.) 33, 200–210 (1939).

    Google Scholar 

  • Ursprung, A., u. G. Blum: Zur Methode der Saugkraftmessung. Ber. dtsch. bot. Ges. 34, 525–539 (1916).

    Google Scholar 

  • Besprechung unserer bisherigen Saugkraftmessungen. Ber. dtsch. bot. Ges. 36, 599–618 (1918).

    Google Scholar 

  • Eine Methode zur Messung der Saugkraft von Hartlaub. Jb. wiss. Bot. 67, 334–348 (1927).

    Google Scholar 

  • Zwei neue Saugkraft-Meßmethoden. Jb. wiss. Bot. 72, 254–334 (1930).

    Google Scholar 

  • Vincent, R. S., and G. H. Simmonds: Examination of the Berthelot method of measuring tension in liquids. Proc. Phys. Soc. London 55, 376–382 (1943).

    Article  CAS  Google Scholar 

  • Vries, H. de: Eine Methode zur Analyse der Turgorkraft. Jb. wiss. Bot. 14, 427–601 (1884).

    Google Scholar 

  • Walter, H.: Kritisches zur Darstellung der osmotischen Zustandsgrößen in den verschiedenen Lehrbüchern der Botanik. Planta (Berl.) 40, 550–554 (1952).

    Article  Google Scholar 

  • Weatherley, P. E.: Some theoretical considerations of cell water relations. Ann. of Bot. 16, 137–142 (1952).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Meyer, B.S. (1956). Wall and turgor pressure and tension. Diffusion pressure deficit or suction force. In: Bahr, G.F., et al. Allgemeine Physiologie der Pflanzenzelle / General Physiology of the Plant Cell. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94676-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94676-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94677-6

  • Online ISBN: 978-3-642-94676-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics