Skip to main content

Ambulante Langzeitrehabilitation am Wohnort

  • Chapter
Interventionen am Herzen

Zusammenfassung

Mit dem sich ändernden Lebensstil hat sich in den letzten Jahren der Sportbegriff wie auch die Einstellung zum Sport vor allem im mittleren und höheren Erwachsenenalter gewandelt; so sind mittlerweile der gesundheitsorientierte Sport und die verschiedenen Formen der Sporttherapie neben dem Breiten-, Wettkampf- und Leistungssport in das Sportverständnis und die Sportmedizin integriert worden. Vermehrte körperliche Aktivität, begleitet von einer gezielten Ernährungsweise gehören zum heute favorisierten, gesunden Lebensstil und stellen erst recht die Grundlage für eine notwendig werdende Therapie von Herz-Kreislauf-Erkrankungen und der mit ihnen verbundenen Stoffwechselstörungen dar. Körperliche Mehraktivität, hier bevorzugt unter Anleitung eines Sportlehrers oder Übungsleiters als Sporttherapie in der Herzgruppe, kann dabei einerseits als unmittelbare Therapieform, andererseits als Motivationhilfe für eine aktive Lebensweise verstanden werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alessi MC, Juhan-Vague I, Kooistra T, Declerck PJ, Collen D (1988) Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepatocellular cell line Hep G2. Thromb Haemost 60: 491–494

    PubMed  CAS  Google Scholar 

  2. Alm’r LO, Janzon L (1975) Low vascular fibrinolytic activity in obesity. Thromb Res 6:171

    Article  Google Scholar 

  3. Alm’r LO, Nilsson IM (1975) On fibrinolysis in diabetes mellitus. Acta Med Scand 198: 101

    Article  Google Scholar 

  4. Americam College of Sports Medicine (1990) The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports Exerc 22: 265–274

    Google Scholar 

  5. Andersen P, Arnesen H, Hjermann I (1981) Hyperlipoproteinaemia and reduced fibrinolytic activity in healthy coronary high-risk men. Acta Med Scand 209: 199–202

    Article  PubMed  CAS  Google Scholar 

  6. Antman EM, Lau J, Kupelnick B, Mosteller F, Chalmers TC (1992) A comparison of results of meta-analysis of randomized control trials and recommendations of clinical experts. Treatments for myocardial infarction. JAMA 268: 240–248

    Article  PubMed  CAS  Google Scholar 

  7. Assmann G, Berg A, Breithard G et al. (1990) Nationale Cholesterin-Initiative: Ein Strategie-Papier zur Erkennung und Behandlung von Hyperlipidämien. Dtsch Ärztebl 87: 1358–1382

    Google Scholar 

  8. Assmann G, Schulte H. PROCAM-Studie (1987) Prospektive Cardiovaskuläre Münster Studie. Panscientia, Hedingen Zürich

    Google Scholar 

  9. Astrand PO (1992) Why exercise. Med Sci Sports Exerc 24: 153–162

    PubMed  CAS  Google Scholar 

  10. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260: 1917–1921

    Article  PubMed  CAS  Google Scholar 

  11. Austin MA, King MC, Vranizan K, Krauss RM (1990) Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease risk. Circulation 82: 495–506

    Article  PubMed  CAS  Google Scholar 

  12. Baumstark MW, Berg A, Halle M, Rensing UFE, Roskamm H, Keul J (1992) Low-density lipoprotein subfractions and severity of angiographically assessed coronary artery disease. In: The Second Int. Symposium on Multiple Risk Factors in Cardiovascular Disease. Program & Abstracts. Osaka 83

    Google Scholar 

  13. Baumstark MW, Halle M, Frey I, Berg A, Keul J (1991) Composition and distribution of LDL-subfractions in sedentary and endurance trained men with hypercholesterolemia. In: 9th International Symposium on Atherosclerosis. Abstracts. International Atherosclerosis Society, 193

    Google Scholar 

  14. Berg A (1985) Einfluß der ambulanten Bewegungstherapie (Herzgruppen) auf Herz-Kreislauf- und Stoffwechselgrößen bei Patienten mit Zustand nach Myokardinfarkt. Herz Kreisl 17: 522–528

    Google Scholar 

  15. Berg A, Baumstark MW, Frey I, Halle M, Keul J (1992) Stellenwert des Sports in der Therapie von Dyslipoproteinämien. In: Greten H (Hrsg) Strategien in der Lipidtherapie — heute und morgen. MMV, München, S 79–94

    Google Scholar 

  16. Berg A, Baumstark MW, Frey I, Keul J (1990) Apolipoprotein A-I und B Serumkonzentrationen in einer baden-württembergischen Bevölkerungsstichprobe. GIT Labor Med 5: 255–259

    Google Scholar 

  17. Berg A, Frey I, Baumstark MW, Halle M, Keul J (1993) Sport und Lipide. Lipid Akt 6: 1–9

    Google Scholar 

  18. Berg A, Frey I, Baumstark MW, Halle M, Keul J (1994) Physical activity and lipoprotein lipid disorders. Sports Med 17: 6–21

    Article  PubMed  CAS  Google Scholar 

  19. Berg A, Frey I, Huonker M, Keul J (1994) Lebensstil und Freizeitverhalten von Patienten mit KHK. Der Mediziner 3 (8): 8–14

    Google Scholar 

  20. Berg A, Halle M, Baumstark M, Frey I, Keul J (1991) Einfluß und Wirkweise der körperlichen Aktivität auf den Lipid- und Lipoproteinstoffwechsel. Dtsch Z Sportmed 42: 224–231

    Google Scholar 

  21. Berg A, Halle M, Baumstark M, Frey I, Keul J (1992) Physical activity, lipids and lipoprotein metabolism. The benefit of exercise and training in hyperlipidemia. In: Watson RR, Eisinger M (eds) Exercise and disease. CRC Press, Boca Raton, pp 26–36

    Google Scholar 

  22. Berg A, Halle M, Baumstark MW, Keul J (1994) Bedeutung der Lipoproteine bei der Pathogenese der KHK. Die Rolle der körperlichen Aktivität. Dtsch Ärztebl 91: A822-A830

    Google Scholar 

  23. Berg A, Jakob E, Lehmann M, Dickhuth HH, Huber G, Keul J (1990) Aktuelle Aspekte der modernen Ergometrie. Pneumologie 44: 2–13

    PubMed  CAS  Google Scholar 

  24. Berg A, Johns J, Baumstark M, Kreutz W, Keul J (1983) HDL subfractions after a single, extended episode of physical exercise. Atherosclerosis 47: 231–240

    Article  PubMed  CAS  Google Scholar 

  25. Berg A, Keul J (1984) Validity of predictable effects in metabolic changes. Med Sport Sci 17: 238–249

    Google Scholar 

  26. Berg A, Keul J (1984) (1985) Influence of maximum aerobic capacity and relative body weight on the lipoprotein profile in athletes. Atherosclerosis 55: 225–231

    Article  PubMed  CAS  Google Scholar 

  27. Berg A, Lehmann M, Keul J (1986) Körperliche Aktivität bei Gesunden und Koronarkranken. Thieme, Stuttgart

    Google Scholar 

  28. Berg A, Späth M, Rokitzki L, Staiger J, Keul J (1987) Influence of symptom-limited stress on blood lactate behaviour in coronary heart disease (CHD) patients. Eur Heart J 8:71–75

    PubMed  Google Scholar 

  29. Blair SN, Kohl III HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262: 2395–2401

    Article  PubMed  CAS  Google Scholar 

  30. Bortz WM (1973) On the control of cholesterol synthesis. Metabolism 22: 1507–1524

    Article  PubMed  CAS  Google Scholar 

  31. Bourey RE, Santoro SA (1988) Interactions of exercise, coagulation, platelets, and fibrinolysis — a brief review. Med Sci Sports Exerc 20: 439–446

    PubMed  CAS  Google Scholar 

  32. Calvalho de Souza J, Soria C, Ayrault-Jarrier M et al. (1988) Association between coagulation factors VII and X with triglyceride rich lipoproteins. J Clin Pathol 41: 940–944

    Article  Google Scholar 

  33. Campos H, Bailey SM, Gussak LS, Silex X, Ordovas JM, Schaefer EJ (1991) Relations of body habitus, fitness level, and cardiovascular risk factors including lipoproteins and apolipoproteins in a rural and urban Costa Rican population. Arterioscler Throm 11: 1077–1088

    Article  CAS  Google Scholar 

  34. Campos H, Genest JJ, Blijlevens E et al. (1992) Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb 12: 187–195

    Article  PubMed  CAS  Google Scholar 

  35. Chance B, Leigh JS, Clark BJ, Maris J, Kent J, Nioka S, Smith D (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: A steady-state analysis of the work/energy cost transfer function. Proc Nat Acad Sci USA 82: 8384–8388

    Article  PubMed  CAS  Google Scholar 

  36. Chandrashekhar Y, Anand IS (1991) Exercise as a coronary protective factor. Am Heart J 122: 1723–1739

    Article  PubMed  CAS  Google Scholar 

  37. Dattilo AM, Krisetherton PM (1992) Effects of weight reduction on blood lipids and lipoproteins — A meta-analysis. Am J Clin Nutr 56: 320–328

    PubMed  CAS  Google Scholar 

  38. Despres JP (1991) Lipoprotein metabolism in visceral obesity. Int J Obesity 15: 45–52

    CAS  Google Scholar 

  39. Deutsche Herz-Kreislauf-Präventionsstudie (1988) Nationaler Untersuchungs-Survey und regionale Untersuchungs-Surveys der DHP. DHP Forum, Berichte/Mitteilungen, S 2

    Google Scholar 

  40. DGE Deutsche Gesellschaft für Ernährung eV (1992) Ernährungsbericht 1992. Frankfurt

    Google Scholar 

  41. Dufaux B, Assmann G, Hollmann W (1982) Plasma lipoproteins and physical activity: A review. Int J Sports Med 3: 123–136

    Article  PubMed  CAS  Google Scholar 

  42. Durant RH, Binder CW, Harkess JW, Gray R (1983) The relationship between physical activity and serum lipids and lipoproteins in black children and adolescents. J Adol Health Care 4: 55–60

    Article  CAS  Google Scholar 

  43. Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS (1988) Physical fitness as a predictor of cardiovascular mortality in asymptomatic north American men. The Lipid Research Clinic mortality follow-up study. N Engl J Med 319: 1379–1384

    Article  PubMed  CAS  Google Scholar 

  44. Epstein SE, Rosing DR, Brakman P, Redwood DR, Astrup T (1970) Impaired fibrinolytic response to exercise in patients with type IV hyperlipoproteinaemia. Lancet II: 631–634

    Article  Google Scholar 

  45. Estelles A, Tormo G, Aznar J, Espana F, Tormo V (1985) Reduced fibrinolytic activity in coronary heart disease in basal conditions and after exercise. Thromb Res 40: 373–383

    Article  PubMed  CAS  Google Scholar 

  46. Franklin BA, Gordon S, Timmis GC (1992) Amount of exercise necessary for the patient with coronary artery disease. Am J Cardiol 69: 1426–1432

    Article  PubMed  CAS  Google Scholar 

  47. Fraser GE, Phillips RL, Harris RH (1983) Physical fitness and blood pressure in school children. Circulation 67: 405–411

    Article  PubMed  CAS  Google Scholar 

  48. Fripp RR, Hodgson JL, Kwiterovich PO, Werner JC, Schüler HG, Whitman V (1985) Aerobic capacity, obesity, and atherosclerotic risk factors in male adolescents. Pediatry 75: 813–818

    CAS  Google Scholar 

  49. Glatz JFC, Vork MM, Cistola DP, Vusse GJ van der (1993) Cytoplasmic fatty acid binding protein: Significance for intracellular transport of fatty acids and putative role on signal transduction pathways. Prostaglandins Leukotrienes Ess Fatty Acids 48: 33–41

    Article  CAS  Google Scholar 

  50. Gram J, Jespersen J (1987) A selective depression of tissue plasminogen activator (t-PA) activity in euglobulins characterises a risk group among survivors of acute myocardial infarction. Thromb Haemost 57: 137–139

    PubMed  CAS  Google Scholar 

  51. Griffin BA, Skinner ER, Maughan RJ (1988) The acute effect of prolonged walking and dietary changes on plasma lipoprotein concentrations and high-density lipoprotein subfractions. Metabolism 37: 535–541

    Article  PubMed  CAS  Google Scholar 

  52. Gris JC, Schved JF, Feugeas O, Aquilar-Martinez P, Arnaud A, Sanchez N, Sarlat C (1990) Impact of smoking, physical training and weight reduction on FVII, PAI-1 and hemostatic markers in sedentary men. Thromb Haemost 64: 516–520

    PubMed  CAS  Google Scholar 

  53. Gunnarsson R, Nyman D, Walinder O (1980) Fibrinolytic activity and diabetes control: Evidence for a relationship. Acta Med Scand 639: 23–24

    CAS  Google Scholar 

  54. Haffner SM, Fong D, Hazuda HP, Pugh JA, Patterson JK (1988) Hyperinsulinemia, upper body adiposity, and cardiovascular risk factors in non-diabetics. Metabolism 37: 338–345

    Article  PubMed  CAS  Google Scholar 

  55. Halle M, Baumstark MW, Berg A, Frey I, Keul J (1990) Verteilung von LDL-Subfraktionen bei trainierten und untrainierten Hypercholesterinämikern. Z Kardiol 79 (Suppl 2): 53 (Abstr)

    Google Scholar 

  56. Halle M, Baumstark MW, Berg A, Keul J (1991) Verteilung von Low Density Lipoprotein Subfractionen bei männlichen Normalpersonen und Ausdauertrainierten mit und ohne Hypercholesterinämie. In: B ernett P, Jeschke D (Hrsg) Sport und Medizin — pro und contra. Zuckschwerdt, München, S 533–535

    Google Scholar 

  57. Halle M, Berg A, Baumstark MW (1993) Differences in concentration and composition of LDL subfraction particles in hypercholesterolemic men with and without hypertriglyceridemia. Nutr Metab Cardiovasc Dis 3: 179–184

    Google Scholar 

  58. Halle M, Berg A, Baumstark MW, Keul J (1994) Serumtriglyceride als diskriminierender Faktor für die Zahl atherogener Lipoproteinpartikel bei gesunden Männern mit unterschiedlicher Körperkomposition und Fitness. Nieren Hochdruckkrankh (im Druck)

    Google Scholar 

  59. Halle M, Berg A, Frey I, König D, Keul J, Baumstark MW (1994) Relationship of body mass index to LDL subclass phenotype in normoinsulinemic men. Submitted for publication

    Google Scholar 

  60. Hambrecht R, Niebauer J, Marburger C et al. (1993) Various intensities of leisure time physical activity in patients with coronary artery disease: Effects on cardiorespiratory fitness and progression of coronary atherosclerotic lesions. JACC 22: 468–477

    PubMed  CAS  Google Scholar 

  61. Hamsten A, Walldius G, Szamosi A et al. (1987) Plasminogen activator inhibitor in plasma: Risk for recurrent myocardial infarction. Lancet: 3–8

    Google Scholar 

  62. Hamsten A, Wiman B, DeFaire V, Blombaeck M (1985) Increased plasma levels of rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 313:1557–1563

    Article  PubMed  CAS  Google Scholar 

  63. Hansen JB, Olsen JO, Osterud B (1990) Physical exercise enhances plasma levels of extrinsic pathway inhibitor (EPI). Thromb Haemost 64: 124–126

    PubMed  CAS  Google Scholar 

  64. Haskell WL (1985) Physical activity and health: Need to define the required stimulus. Am J Cardiol 55: 4D–5D

    Article  PubMed  CAS  Google Scholar 

  65. Haskell WL (1985) The influence of exercise training on plasma lipids and lipoproteins in health and disease. Acta Med Scand 711 (Suppl): 25–37

    Google Scholar 

  66. Heimberg MEH, Goh EH, Klusner HJ, Soler-Argilaga C, Weinstein I, Wilcox HG (1978) Regulation of hepatic metabolism of free fatty acids: Interrelationship among secretion of very-low-density lipoproteins, ketogenesis, and cholesterogenesis. In: Dietschy JM, Gotto Jr AM, Ontko JA (eds) Disturbances in lipid and lipoprotein metabolism. Karger, New York, pp 251–267

    Google Scholar 

  67. Heinrich J, Schulte H, Balleisen L, Assmann G, van de Loo J (1991) Predictive value of haemostatic variables in the PROCAM-study. Thromb Haemost 65: 815

    Google Scholar 

  68. Herrick JB (1912) Clinical features of sudden obstruction of the coronary arteries. JAMA 59: 2015–2020

    Article  Google Scholar 

  69. Hurley BF, Nemeth PM, Martin WH, Hagberg JM, Dalsky GP, Holloszy JO (1986) Muscle triglyceride utilisation during exercise: effect of training. J Appl Physiol 60: 562–567

    PubMed  CAS  Google Scholar 

  70. Jansson E, Kaijser L (1987) Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol 62: 999–1005

    PubMed  CAS  Google Scholar 

  71. Juhan-Vague I, Alessi MC, Joly P et al. (1989) Plasma plasminogen activator inhibitor-1 in angina pectoris: Influence of plasma insulin and acute-phase response. Arteriosclerosis 9: 362–367

    Article  PubMed  CAS  Google Scholar 

  72. Kahn SE, Larson VG, Beard JC et al. (1990) Effect of exercise on insulin action, glucose tolerance and insulin secretion in aging. Am J Physiol 358: E937–E943

    Google Scholar 

  73. Kannel WB, Wolf PA, Castelli WP, D’Agostino RB (1987) Fibrinogen and risk of cardiovascular disease. JAMA 258: 1183–1186

    Article  PubMed  CAS  Google Scholar 

  74. Keil U, Stieber A, Döring A et al. (1988) The cardiovascular risk factor profile in the study aerea Augsburg. Results from the first MONICA survey 1984/1985. Acta Med Scand (Suppl) 728: 119–128

    CAS  Google Scholar 

  75. Kern PA, Ong JM, Saffari B, Carty J (1990) The effects of weight loss on the activity and expression of adipose-tissue lipoprotein lipase in very obese humans. N Engl J Med 322: 1053–1059

    Article  PubMed  CAS  Google Scholar 

  76. Keul J (1975) Muscle metabolism during long lasting exercise. In: Howald H, Poortmans JR (eds) Metabolic adaptation to prolonged physical exercise. Birkhäuser, Basel, pp 31–42

    Google Scholar 

  77. Keul J, Doll E, Keppler D (1972) Energy metabolism of human muscle. Karger, Basel

    Google Scholar 

  78. Kiens B, Lithell H (1989) Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. J Clin Invest 83: 558–564

    Article  PubMed  CAS  Google Scholar 

  79. Klesges RC, Coates TJ, Moldenhauer-Klesges LM, Holzer B, Gustavson J, Barnes J (1984) The FATS: An observational system for assessing physical activity in children and associated parent behavior. Behav Assess 6: 333–345

    Google Scholar 

  80. Klesges RC, Malott JM, Boschee PF, Weber JM (1986) The effects of parental influences on children’s food intake, physical activity and relative body weight. Int J of Eating Disorders 5: 335–346

    Article  Google Scholar 

  81. Koivisto V, Hendler R, Nadel E, Felig P (1982) Influence of physical training on the fuel-hormone response to prolonged low intensity exercise. Metabolism 31: 192–197

    Article  PubMed  CAS  Google Scholar 

  82. König D, Grathwohl D, Baumstark MW, Keul J, Berg A (1993) Eicosanoid-Vorstufen in Plasma und Blutzellen — Bestimmungsmethodik und mögliche Bedeutung für die Regulation der Entzündungslage bei Sportlern. DSÄK, Paderborn

    Google Scholar 

  83. Krauss RM (1987) Relationship of intermediate and lowdensity lipoprotein subspecies to risk of coronary artery disease. Am Heart J 113: 578–582

    Article  PubMed  CAS  Google Scholar 

  84. Krauss RM (1991) The tangled web of coronary risk factors. Am J Med 90 (Suppl 2A): 2A-36S–2A-41S

    Google Scholar 

  85. Krauss RM, Williams PT, Brensike J (1987) Intermediatedensity lipoproteins and progression of coronary artery disease in hypercholesterolaemic men. Lancet II: 62–66

    Article  Google Scholar 

  86. Laffel GL, Braumwald E (1984) Thrombolytic therapy. A new strategy for the treatment of acute myocardial infarction. N Engl J Med 311: 710–717; 770–776

    Article  PubMed  CAS  Google Scholar 

  87. Landin K, Stigendal L, Eriksson E, Krotkiewski M, Risberg B, Tengborn L, Smith U (1990) Abdominal obesity is associated with an impaired fibrinolytic activity and elevated plasminogen activator inhibitor-1. Metabolism 39: 1044–1048

    Article  PubMed  CAS  Google Scholar 

  88. Landin K, Tengborn L, Smith U (1990) Elevated fibrinogen and plasminogen activator inhibitor (PAI-1) in hypertension are related to metabolic risk factors for cardiovascular disease. J Intern Med 227: 273–278

    Article  PubMed  CAS  Google Scholar 

  89. Leon AS, Connett J, Jacobs DRJ, Rauramaa R (1987) Leisure-time physical activity levels and risk of coronary heart disease and death. JAMA 258: 2388–2395

    Article  PubMed  CAS  Google Scholar 

  90. Levy RI, Brensike JF, Epstein SE et al. (1984) The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: results of the NHLBI Type II Coronary Intervention Study. Circulation 69: 325–337

    Article  PubMed  CAS  Google Scholar 

  91. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78: 1157–1177

    Article  PubMed  CAS  Google Scholar 

  92. Lowe GDO, Drummond MM, Lorimer AR, Hutton I, Forbes CD, Prentice CRM, Barbenel JC (1980) Relation between extent of coronary artery disease and blood viscosity. Br Heart J 8: 673–674

    Google Scholar 

  93. Lowe GDO, Stromberg P, Forbes CD, McArdle BM, Lorimer AR, Prentice CRM (1982) Increased blood viscosity and fibrinolytic inhibitor in type II hyperlipoproteinaemia. Lancet 27: 472–475

    Article  Google Scholar 

  94. Marti B, Pekkanen (1988) Leben Läufer länger? Schweiz Rundschau Med 41:1097–1100

    Google Scholar 

  95. Marti B, Vartiainen E (1989) Relation between leisure time exercise and cardiovascular risk factors among 15-year-olds in eastern Finnland. J Epid Com Health 43: 228–233

    Article  CAS  Google Scholar 

  96. McGinnis JM (1992) The public health burden of a sedentary lifestyle. Med Sci Sports Exerc 24: s196–s200

    PubMed  CAS  Google Scholar 

  97. Meade TW, Brozovic M, Chakrabarti R et al. (1986) Haemostatic function and ischaemic heart disease: principle results of the Northwick Park Heart Study. Lancet 6: 533–537

    Article  Google Scholar 

  98. Meade TW, North WRS, Chakrabarti R (1980) Haemostatic function and cardiovascular death: early results of a prospective study. Lancet 1:1050–1054

    Article  PubMed  CAS  Google Scholar 

  99. Mehta J, Mehta P, Lawson D, Saldeen T (1987) Plasma tissue plasminogen activator inhibitor levels in coronary artery disease. J Am Coll Cardiol 9: 263–268

    Article  PubMed  CAS  Google Scholar 

  100. Modan M, Or J, Karasik A et al. (1991) Hyperinsulinemia, sex, and risk of atherosclerotic cardiovascular disease. Circulation 84:1165–1175

    PubMed  CAS  Google Scholar 

  101. Moxley RT, Brakman P, Astrup T (1970) Resting levels of fibrinolysis in blood in inactive and exercising men. J Appl Physiol 28: 549–552

    PubMed  CAS  Google Scholar 

  102. Mussoni L, Mannucci L, Sirtori M, Camera M, Maderna P, Sironi L, Tremoli E (1992) Hypertriglyceridemia and regulation of fibrinolytic activity. Arterioscl Thromb 12:19–27

    Article  PubMed  CAS  Google Scholar 

  103. Nordoy A, Illingworth DR, Conner WE, Goodnight S (1990) Increased activity of factor VII and factor VH-phospholipid complex measured using a Normotest system in subjects with hyperlipidemia. Haemostasis 20: 65–72

    PubMed  CAS  Google Scholar 

  104. Nozawa Y, Nakashima S, Nagata K (1991) Phospholipidmediated signaling in receptor activation of human activation of human platelets. Biochim Biophys Acta 1082: 219–238

    PubMed  CAS  Google Scholar 

  105. Nyhan W (1988) Abnormalities in fatty acid oxidation. N Engl J Med 319: 1344–1346

    Article  PubMed  CAS  Google Scholar 

  106. O’Conner GT, Buring JE, Yusuf S, Goldhaber SZ, Olmstead EM, Paffenbarger RS, Hennekens CH (1989) An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation 80: 234–244

    Article  Google Scholar 

  107. Olofsson BO, Dahlen G, Nilsson TK (1989) Evidence for increased levels of plasminogen activator inhibitor and tissue plasminogen activator in plasma of patients with angiographically verified coronary artery disease. Eur Heart J 10: 77–82

    PubMed  CAS  Google Scholar 

  108. Ornish D, Brown SE, Scherwitz LW et al. (1990) Can livestyle changes reverse coronary heart disease? Lancet 336: 129–133

    Article  PubMed  CAS  Google Scholar 

  109. Oscai L, Palmer W (1988) Muscle lipolysis during exercise an update. Sports Med 6: 23–28

    Article  PubMed  CAS  Google Scholar 

  110. Paffenbarger RS, Hyde RT, Wing A, Hsieh CC (1986) Physical activity, all-cause mortality and longevity of college alumni. N Engl J Med 314: 605–613

    Article  PubMed  Google Scholar 

  111. Paffenbarger RS, Hyde RT, Wing AL, Steinmetz CH (1984) A natural history of athleticism and cardiovascular health. JAMA 252: 491–495

    Article  PubMed  Google Scholar 

  112. Paul P (1975) Effects of long lasting physical exercise and training on lipid metabolism. In: Howald H, Poortmans JR (eds) Metabolic adaptation to prolonged physical exercise. Birkhäuser, Basel, pp 156–193

    Google Scholar 

  113. Pavano JA, Collucci M, van der Wer F (1985) Plasminogen activator inhibitor in the blood of patients with coronary artery disease. Br Med J 291: 575–576

    Article  Google Scholar 

  114. Pavlou KN, Krey S, Steffee WP (1989) Exercise as an adjunct to weight loss and maintenance in moderately obese subjects. Am J Clin Nutr 49: 1115–1123

    PubMed  CAS  Google Scholar 

  115. Pekkann J, Marti B, Nissinen A, Tuomilehto J, Punsar S, Karvonen MJ (1987) Reduction of premature mortality by high physical activity: 20-year follow-up of middle-aged Finnish men. Lancet 1:1473–1477

    Article  Google Scholar 

  116. Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37: 1597–1607

    Google Scholar 

  117. Reichmann H, Rohkamm R, Ricker K, Mertens (1988) Mitochondriale Myopathien. Dtsch Med Wochenschr 113: 106–113

    Article  PubMed  CAS  Google Scholar 

  118. Ren J, Henriksson J, Katz A, Sahlin K (1988) NADH content in type I and type II human muscle fibres after dynamic exercise. Biochem J 251: 183–187

    PubMed  CAS  Google Scholar 

  119. Riddoch C, Savage JM, Murphy N, Cran GW, Boreham C (1991) Long term health implications of fitness and physical activity patterns. Arch Dis Childh 66: 1426–1433

    Article  PubMed  CAS  Google Scholar 

  120. Roskamm H (1993) Langzeittherapie und Sekundärprävention bei Zustand nach Herzinfarkt. RHZ Akt 5/12: 4–12

    Google Scholar 

  121. Sallis JF, Patterson TL, Buono MJ, Nader PR (1988) Relation of cardiovascular fitness and physical activity to cardiovascular disease risk factors in children and adults. Am J Epidemiol 127: 932–941

    Google Scholar 

  122. Salonen JT, Nyyssönen K, Korpela H, Tuomilehto J, Seppänen R, Salonen R (1992) High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86: 803–811

    PubMed  CAS  Google Scholar 

  123. Sasaki J, Shindo M, Tanaka H, Ando M, Arakawa K (1987) A long-term aerobic exercise program decreases the obesity index and increases the high density lipoprotein cholesterol concentration in obese children. Int J Obesity 11: 339–345

    CAS  Google Scholar 

  124. Scherwitz LW, Perkins LL, Chesney MA, Hughes GH, Sidney S, Manolio TA (1992) Hostility and health behaviours in young adults: the Cardia Study. Am J Epidemiol 136:137–145

    Google Scholar 

  125. Schneider SH, Kim HC, Khachadurian AK, Ruderman NB (1988) Impaired fibrinolytic response to exercise in type II diabetes: effects of exercise and physical training. Metabolism 37: 924–929

    Article  PubMed  CAS  Google Scholar 

  126. Schuler G, Hambrecht R, Schlierf G et al. (1992) Regular physical exercise and low-fat diet. Effects on progression of coronary artery disease. Circulation 86: 1–11

    PubMed  CAS  Google Scholar 

  127. Schwandt P (1990) Cholesterin-Massen-Screening, Ergebnisse einer Pilotstudie mit 127.00 Teilnehmern in Bayern. In: Assmann G, Heinle H, Schulte H (Hrsg) Arteriosklerose, neue Aspekte aus Zellbiologie und Molekulargenetik, Epidemiologie und Klinik. Vieweg, Braunschweig Wiesbaden

    Google Scholar 

  128. Seidel D, Cremer P (1986) Guidelines for the clinical evaluation of risk factors: first report from the Göttinger Risk, Incidence and Prevalence Study. Atheroscl Rev 14: 61–90

    Google Scholar 

  129. Shaw DA, McNaughton D (1963) Relationship between blood fibrinolytic activity and body fatness. Lancet 1:352–354

    Article  PubMed  CAS  Google Scholar 

  130. Siegler IC, Peterson BL, Barefoot JC, Williams RB (1992) Hostility during late adolescence predicts coronary risk factors at mid-life. Am J Epidemiol 136: 146–154

    PubMed  CAS  Google Scholar 

  131. Simpson HCR, Meade TW, Stirling Y, Mann JI, Chakrabartt R, Woolf L (1983) Hypertriglyceridaemia and Hypercoagulability. Lancet 9: 786–790

    Article  Google Scholar 

  132. Slattery ML, Jacobs DR (1988) Physical fitness and cardiovascular disease mortality. Am J Epidemiol 127: 571–580

    PubMed  CAS  Google Scholar 

  133. Speiser W, Langer W, Pschaick A, Selmayr E, Ibe B, Nowacki PE, Muller-Berghaus G (1988) Increased blood fibrinolytic activity after physical exercise: Comparative study in individuals with different sporting activities and in patients after myocardial infarction taking part in a rehabilitation sports program. Thromb Res 51: 543–555

    Article  PubMed  CAS  Google Scholar 

  134. Stremmel W (1988) Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J Clin Invest 81: 844–852

    Article  PubMed  CAS  Google Scholar 

  135. Stremmel W, Diede H (1989) Fatty acid uptake by human hepatoma cell lines represents a carrier-mediated uptake process. Biochim Biophys Acta 1013: 218–222

    Article  PubMed  CAS  Google Scholar 

  136. Tell GS, Vellart OD (1988) Physical fitness, physical activity, and cardiovascular disease risk factors in adolescents: the Oslo youth study. Prev Med 17: 12–24

    Article  PubMed  CAS  Google Scholar 

  137. Thompson PD, Cullinane EM, Sady SP et al. (1988) Modest changes in high density lipoprotein concentration and metabolism with prolonged exercise training. Circulation 78: 25–34

    Article  PubMed  CAS  Google Scholar 

  138. Thompson PD, Cullinane EM, Sady SP, Flynn MM, Chenevert CB, Herbert PN (1991) High density lipoprotein metabolism in endurance athletes and sedentary men. Circulation 84: 140–152

    PubMed  CAS  Google Scholar 

  139. Tornvall P, Karpe F, Carlson LA, Hamsten A (1991) Relationships of low density lipoprotein subfractions to angiographically defined coronary artery disease in young survivors of myocardial infarction. Atherosclerosis 90: 67–80

    Article  PubMed  CAS  Google Scholar 

  140. Vaccaro P, Mahon AD (1989) The effects of exercise on coronary heart disease risk factors in children. Sports Med 8: 139–149

    Article  PubMed  CAS  Google Scholar 

  141. Vague P, Juhan-Vague I, Aillaud MF, Badier C, Viard R, Alessi MC, Collen D (1986) Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism 35: 250–253

    Article  PubMed  CAS  Google Scholar 

  142. Verheugt FWA, Wouter ten Cate J, Sturk A, Imandt L, Verhorst PMJ, Verwey W, Roos JP (1987) Tissue plasminogen activator (t-PA) activity and inhibition in patients with myocardial infarction and normal coronary arteries. Am J Cardiol 59: 1075–1079

    Article  PubMed  CAS  Google Scholar 

  143. Waxman M, Stunkard AJ (1980) Caloric intake and expenditure of obese boys. J Pediatr 96: 187–193

    Article  PubMed  CAS  Google Scholar 

  144. Weidner G, Hutt J, Connor SL, Mendell NR (1992) Family stress and coronary risk in children. Psychosom Med 54: 471–479

    PubMed  CAS  Google Scholar 

  145. Weiss M, Hupfeld W, Weicker H (1984) Einstellung des optimalen Trainingstempos zur Förderung der lipolytischen Kapazität im Gehen: Übertragbarkeit von Laufbandtests in den Feldversuch. In: Jeschke D (Hrsg) Stellenwert der Sportmedizin in Medizin und Sportwissenschaft. Springer, Berlin Heidelberg New York, S. 207–214

    Chapter  Google Scholar 

  146. Wilhelmsen L, Ssvärdsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G (1984) Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 311: 501–505

    Article  PubMed  CAS  Google Scholar 

  147. Williams PT, Krauss RM, Vranizan KM, Albers JJ, Terry RB, Wood PDS (1989) Effects of exercise-induced weight loss on low density lipoprotein subfractions in healthy men. Arterioscler Thromb 9: 623–632

    Article  CAS  Google Scholar 

  148. Williams PT, Krauss RM, Vranizan KM, Albers JJ, Wood PDS (1992) Effects of weight-loss by exercise and by diet on apolipoproteins A-I and A-II and the particle-size distribution of high-density lipoproteins in men. Metabolism 41:441–449

    Article  PubMed  CAS  Google Scholar 

  149. Williams PT, Krauss RM, Vranizan KM, Wood PDS (1990) Changes in lipoprotein subfractions during diet-induced and exercise-induced weight loss in moderately overweight men. Circulation 81: 1293–1304

    Article  PubMed  CAS  Google Scholar 

  150. Williams PT, Wood PD, Haskell WL, Vranizan K (1982) The effects of running mileage and duration on plasma lipoprotein levels. JAMA 247: 2674–2679

    Article  PubMed  CAS  Google Scholar 

  151. Wirth A, Schlierf G, Schettler G (1979) Körperliche Aktivität und Fettstoffwechsel. Klin Wochenschr 57:1195–1201

    Article  PubMed  CAS  Google Scholar 

  152. Wong ND, Hei TK, Qaqundah PY, Davidson DM, Bassin SL, Gold KV (1992) Television viewing and pediatric hypercholesterolemia. Pediatry 90: 75–79

    CAS  Google Scholar 

  153. Wood PD, Stefanick ML, Dreon DM et al. (1988) Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise. N Engl J Med 319: 1173–1179

    Article  PubMed  CAS  Google Scholar 

  154. Wood PD, Stefanick ML, Williams PT, Haskell WL (1991) The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women. N Engl J Med 325: 461–466

    Article  PubMed  CAS  Google Scholar 

  155. Yalow RS, Glick SM, Roth J (1965) Plasma insulin and growth hormone levels in obesity and diabetes. Ann N Y Acad Sci 131: 357–373

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berg, A., Halle, M., Ahlgrimm, E., Keul, J. (1995). Ambulante Langzeitrehabilitation am Wohnort. In: Unger, F., Mörl, H., Dieterich, H.A. (eds) Interventionen am Herzen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93558-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93558-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-93559-6

  • Online ISBN: 978-3-642-93558-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics