The Biological Mechanism of Low Dose Ionizing Radiation: Induction of Inflammatory Reactions in Human Blood

  • Michael G. Vicker
  • Heino Bultmann
  • Ulf Glade
  • Thomas Häfker
Conference paper

Zusammenfassung

Niedrige Dosen ionisierender γ-Strahlung von 137-Cäsium wirken im menschlichen Blut als unphysiologisches Stimulanz von Entzündungsreaktionen. Strahlung erhöht die Aktivierung des “oxidative burst” nach Behandlung des Blutes mit Aktivatoren, wie Ca2+ Ionophor A23187 oder Phorbolester. Diese Reaktion wird durch Amplifizierung der zellulären Chemilumineszenz mit Luminol gemessen. Die erhöhte Lumineszenz kann einige Minuten nach der Bestrahlung beobachtet werden, dauert mindestens 1 h, ist durch die interzelluläre Verbreitung eines Vermittlermoleküls gekennzeichnet und ist γ-dosisabhängig (5–50 μSv, in vitro). Eine ähnliche Reaktion konnte bei Patienten nach einer routinemäßigen Röntgenaufnahme der Lunge festgestellt werden. Die Reaktion ist gehemmt durch EGTA und Adenosin (zwei Zeichen ihrer Ca2+-Abhängigkeit) und durch den Phospho-lipase A2-Blocker p-Bromphenacylbromid. Der Cyclo-oxygenase-Blocker Aspirin ist dagegen nur teilweise effektiv. Diese Reaktionen auf niedrige Dosen implizieren die Wirkung von zweiten Boten-Systemen, insbesondere Metaboliten von Arachidonsäure und sind von molekularer „Beschädigung- & Reparatur-“ Reaktionen unabhängig. Die Ergebnisse zeigen einen Mechanismus der niedrigen Strahlendosen mit Konsequenzen für die Homöeostasis von Entzündungs- und zweiten Boten-Reaktionen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sagan, L. (1989) On radiation, paradigms and hormesis. Science 245, 574 & 621PubMedCrossRefGoogle Scholar
  2. 2.
    Wolff, S. (1989) Are radiation-induced effects hormetic? Science 245, 575 & 621PubMedCrossRefGoogle Scholar
  3. 3.
    Fabrikant, J. I. (1987) Adaptation of cell renewal systems under continuous irradiation. Health Phys. 52, 561–570PubMedCrossRefGoogle Scholar
  4. 4.
    Waldren, C., Corell, L., Sognier, M. A. & Puck, T. T. (1986) Measurement of low levels of x-ray mutagenesis in relation to human disease. Proc. Natl. Acad. Sci. (USA) 83, 4839–4843PubMedCrossRefGoogle Scholar
  5. 5.
    Luckey, T. (1980) Honnesis with Ionizing Radiation. (CRC Press, Boca Raton, FL)Google Scholar
  6. 6.
    Jacobson, A. P., Plato, P. A. & Frigerio, N. A. (1976) The role of natural radiations in human leukemogenesis. Am. J.Publ. Health 66, 31–37CrossRefGoogle Scholar
  7. 7.
    Feinendegen, L. E., Mühlensiepen, H., Lindberg, C., Marx, J., Porschen, W. & Booz, J. (1984) Acute and temporary inhibition of thymidine kinase in mouse bone marrow cells after low-dose exposure. Int. J. Radiat. Biol. 45, 205–215CrossRefGoogle Scholar
  8. 8.
    Petkau, A. (1980) Radiation carcinogenesis from a membrane perspective. Acta Physiol. Scand., Suppl. 492, 81–90Google Scholar
  9. 9.
    Baisch, H. & Bluhm, H. (1978) Effects of x-rays on cell membranes. I. Changes of membrane potential of L-cells. Radiat. Environm. Biophys. 15, 213–219CrossRefGoogle Scholar
  10. 10.
    Myers, D. K. & Bide, R. W. (1966) Biochemical effects of x- irradiation on erythrocytes. Radiat. Res. 27, 250–263CrossRefGoogle Scholar
  11. 11.
    Konings, A. W. T. (1981) Radiation-induced efflux of potassium ions and haemoglobin in bovine erythrocyte at low doses and low dose-rates. Int. J. Radiat. Biol. 40, 441–444CrossRefGoogle Scholar
  12. 12.
    Kandasamy, S. B. & Hunt, W. A. (1990) Involvement of prostaglandins in radiation-induced temperature responses in rats. Radiat. Res. 121, 84–90PubMedCrossRefGoogle Scholar
  13. 13.
    Keyse, S. M. & Tyrrell, R. M. (1987) Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J. Biol. Chem. 262, 14821–14825PubMedGoogle Scholar
  14. 14.
    Nomura, S. & Oishi, M. (1984) UV-irradiation induces an activity which stimulates simian virus 40 rescue upon cell fusion. Molec. Cell. Biol. 4, 1159–1162PubMedGoogle Scholar
  15. 15.
    Lücke-Huhle, C., Pech, M. & Herrlich, P. (1986) Selective gene amplification in mammalian cells after exposure to 60Co γ- rays, 241Am α particles, or UV light. Radiat. Res. 106, 345–355PubMedCrossRefGoogle Scholar
  16. 16.
    Valerie, K., Delers, A., Bruck, C., Thiriart, C., Rosenberg, H., Debrouck, C. & Rosenberg, M. (1988) Activation of human immunodifficiency virus type I by DNA damage in human cells. Nature 333, 78–81PubMedCrossRefGoogle Scholar
  17. 17.
    Varshavsky, A. (1980) Tumor promoters, hormones, and genome “fluidity”: studies on gene amplification and transfection. Cell 25, 561–572CrossRefGoogle Scholar
  18. 18.
    Babior, B. M. (1978) Oxygen-dependent microbial killing by phagocytes. New Engl. J. Med. 298, 659–668PubMedCrossRefGoogle Scholar
  19. 19.
    Becker, E. L., Sigman, M. & Oliver, J. M. (1979) Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptides and A23187. Am. J. Path. 95, 81–97PubMedGoogle Scholar
  20. 20.
    Bender, J. G., McPhail, L. C. & van Epps, D. E. (1983) Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme. J. Immunol. 130, 2316–2323PubMedGoogle Scholar
  21. 21.
    Campbell, A. K. (1988) Chemiluminescence: Principles and Applications in Biology and Medicine, (Ellis Horwood, Chichester), pp. 315–369Google Scholar
  22. 22.
    van Dyke, K. (1987) Introduction to cellular chemiluminescence, neutrophils macrophages, and monocytes. In Cellular Chemiluminescence, (eds.) van Dyke, K. & Castranova, V., CRC Press, Boca Raton, FL, Vol. 1, pp. 3–22Google Scholar
  23. 23.
    Bokoch, G. M. & Gilman, A. G. (1984) Inhibition of receptor mediated release of arachidinic acid by pertussis toxin. Cell 39, 301–308PubMedCrossRefGoogle Scholar
  24. 24.
    Kroll, M. H. & Schafer, A. I. (1989) Biochemical mechanisms of platelet activation. Blood 74, 1181–1195PubMedGoogle Scholar
  25. 25.
    Tao, W., Molski, F. P. & Sha’afi, R. I. (1989) Arachidonic acid release in rabbit neutrophils. Biochem. J. 257, 633–637PubMedGoogle Scholar
  26. 26.
    Burch, R. M., Luini, L. & Axelrod, J. (1986) Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to al-adrenergic stimulation in FRTL5 thyroid cells. Proc. Natl. Acad. Sci. (USA) 83, 7201–7205PubMedCrossRefGoogle Scholar
  27. 27.
    Burgoyne, R. D., Cheek, T. R. & O’Sullivan, A. J. (1988) Receptor-activation of phospholipase A2 in cellular signalling1Tr. Biochem. Sci. 12, 332–333CrossRefGoogle Scholar
  28. 28.
    Kato, T., Wokalek, H., Schöpf, E., Eggert, H., Ernst, M., Rietschel, E. T. & Fischer, H. (1981) Measurement of chemiluminescence in freshly drawn human blood. I. Role of granulocytes, platelets and plasma factors in zymosan-induced chemiluminescence. Klin. Wochenschr. 59, 203–211PubMedCrossRefGoogle Scholar
  29. 29.
    Black, D. (1984) Investigation of the Possible Increased Incidence of Cancer in West Cumbria, (HMSO, London)Google Scholar
  30. 30.
    Bond, V. P., Feinendegen, L. E. & Sondhaus, C. A. (1987) Microdosimetric concepts applied to hormesis. Health Phys. 52, 659–661PubMedCrossRefGoogle Scholar
  31. 31.
    Hall, F. L., Fernyhough, P., Ishii, D. N. & Vulliet, P. R. (1988) Suppression of nerve growth factor-directed neurite outgrowth in PC12 cells by sphingosine, an inhibitor of protein kinase C. J. Biol. Chem. 263, 4460–4466PubMedGoogle Scholar
  32. 32.
    Roberts, P. A., Newby, A. C., Hallett, M. B. & Campbell, A. K. (1985) Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. Biochem. J. 227, 669–674PubMedGoogle Scholar
  33. 33.
    Lohse, M. J., Klotz, K. N., Salzer, M. J. & Schwabe V. (1988) Adenosine regulates the Ca2+ sensitivity of mast cell mediator release. Proc. Natl. Acad. Sci. (USA) 85, 8875–8879PubMedCrossRefGoogle Scholar
  34. 34.
    Cooke, E. & Hallett, M. B. (1985) The role of C-kinase in the physiological activation of the neutrophil oxidase. Biochem. J. 232, 323–327PubMedGoogle Scholar
  35. 35.
    Brom, J., Schönfeld, W. & König, W. (1988) Metabolism of leukotriene B4 by activated human polymorphonuclear granulocytes. Immunol. 64, 509–518Google Scholar
  36. 36.
    Roberts, M. F., Deems, R. A., Mincey, T. C. & Dennis, E. A. (1977) Chemical modification of the histidine residue in phospholipase A2. J. Biol. Chem. 252, 2405 – 2411PubMedGoogle Scholar
  37. 37.
    Nakadate, T., Yamamato, S., Iseki, H., Sonada, S., Takemura, S., Ura, A., Hosada, Y. & Kato, R. (1983) Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion by nordi-hydroguaiaretic acid, a lipoxygenase inhibitor, and p-bromophenacyl bromide, a phospholipase A2 inhibitor. GANN 73, 841–843Google Scholar
  38. 38.
    Sweatt, J. O., Blair, I. A., Cragoe, E. J. & Limbird, L. E. (1986) Inhibitors of Na+/H+ exchange block epinephrine- and ADP-induced stimulation of human platelet phospholipase C by blockade of arachidonic acid release at a prior step. J. Biol. Chem. 261, 8660–8666PubMedGoogle Scholar
  39. 39.
    Marcus, A. J., Safier, L. B., Ullman, H. L., Islam, N., Broekman, M. J., Falck, J. R., Fischer, S. & von Schacky, C. (1988) Platelet-neutrophil interactions. J. Biol. Chem. 263, 2223–2229PubMedGoogle Scholar
  40. 40.
    Tohmatsu, T., Nakashima, S. & Nazawa, Y. (1989) Evidence for Ca2+- mobilizing action of arachidonic acid in human platelets. Biochem. Biophys. Res. Comm. 1012, 97–102Google Scholar
  41. 41.
    Yoshimoto, S., Yoshimoto, T. & Tsubura, E. (1982) Arachidonic acid-induced chemiluminescence of human polymorphonuclear leukocytes. Biochem. Biophys. Res. Comm. 107, 779–784PubMedCrossRefGoogle Scholar
  42. 42.
    Lackie, J. M. & Lawrence, A. J. (1987) Signal response transduction in rabbit neutrophil leukocytes: the effects of exogenous phospholipase A2 suggest two pathways exist. Biochem. Pharmac. 36, 1941–1945CrossRefGoogle Scholar
  43. 43.
    Croset, M. & Lagarde, M. (1983) Stereospecific inhibition of PGH2-induced platelet aggregation by lipoxygenase products of icosaenoic acids. Biochem. Biophys. Res. Comm. 112, 878–883PubMedCrossRefGoogle Scholar
  44. 44.
    Aharony, D., Smith, J. B. & Silver, M. J. (1982) Regulation of arachidonate-induced platelet aggregation by the lipoxygenase product, 12-hydroperoxyeicosatatraenoic acid. Biochim. Biophys. Acta 718, 193–200PubMedCrossRefGoogle Scholar
  45. 45.
    Ito, M., Karmali, R. & Krim, M. (1985) The effect of interferon on chemiluminescence and hydroxy radical production in murine macrophages stimulated by PMA. Immunol. 56, 533–541Google Scholar
  46. 46.
    di Virgilio, F. & Gomperts, B. D. (1983) Ionophore monensin induces Na+-dependent secretion from rabbit neutrophils. Requirement for intracellular Ca2+ stores. Biochim. Biophys. Acta 763, 292–298PubMedCrossRefGoogle Scholar
  47. 47.
    Sha’afi, R. I., Molski, T. F. P. & Naccache, P. H. (1981) Chemotactic factors activate differentiate permeation pathways for sodium and calcium in rabbit neutrophils: effect of amiloride. Biochem. Biophys. Res. Comm. 99, 1271–1276PubMedCrossRefGoogle Scholar
  48. 48.
    Krishnamurthi, S, Morgan, W. A. & Kakkar, V. V. (1990) Extracellular Na+, but not Na+/H+ exchange, is necessary for receptor-mediated arachidonate release in platelets. Biochem. J. 265, 155–160PubMedGoogle Scholar
  49. 49.
    Chance, B., Seis, H. & Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605PubMedGoogle Scholar
  50. 50.
    Rouzer, C. A. & Kargman, S. (1988) Translocation of 5-lipoxygenase to the membrane in human leukocytes challenged with ionophore A23187. J. Biol. Chem. 263, 10980–10988PubMedGoogle Scholar
  51. 51.
    Lasser, E. C. & Stenstrom, K. W. (1954) Elevation of circulating blood histamine in patients undergoing deep Roentgen therapy. Am. J. Roentgenol. 72, 985–988Google Scholar
  52. 52.
    Black, A. K., Fincham, M. W., Greaves, M. W. & Hensby, C. N. (1980) Time course changes in levels of arachidonic acid and prostaglandin D2 E2 F2 in human skin following ultraviolet B irradiation. Br. J. Clin. Pharmac. 10, 453–457Google Scholar
  53. 53.
    Doyle, I. F. & Strike, T. A. (1976) Radiation-released histamine in the rhesus monkey as modified by mast-cell depletion and antihistamine. Experientia 33, 1047–1049CrossRefGoogle Scholar
  54. 54.
    Eisen, V. & Walker, D. I. (1976) Effect of ionizing radiation on prostaglandin-like activity in tissues. Br. J. Pharmac. 57, 527–532Google Scholar
  55. 55.
    Barenboim, G. M., Domanskii, A. N. & Turoverov, K. K. (1966) Luminescence of Biopolymers and Cells; (Moscow) RussianGoogle Scholar
  56. 56.
    Hong, K. W., Lee, W. S., Rhim, B. Y. & Shin, Y. W. (1989) Assessment of superoxide-mediated release of vascular-inhibitory factor(s) from endothelial cells by using a two-bath system. Experientia 45, 320–322PubMedCrossRefGoogle Scholar
  57. 57.
    Oda, T., Akaike, T., Hamamato, T., Suzuki, F., Hirano, T. & Maeda, H. (1989) Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244, 974–976PubMedCrossRefGoogle Scholar
  58. 58.
    Weitzman, S. A., Weitberg, A. B., Clark, E. P. & Stossel, T. P. (1985) Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science 227, 1231–1233PubMedCrossRefGoogle Scholar
  59. 59.
    Kneale, G. W. & Stewart, A. M. (1977) Age variation in the cancer risks from foetal irradiation. Br. J. Cancer 35, 501–510CrossRefGoogle Scholar
  60. 60.
    Emerit, I. & Cerutti, P. (1983) Clastogenic action of tumor promoter phorbol-12-myristate-13-acetate in mixed human leukocyte cultures. Carcinogenesis 4, 1313–1316PubMedCrossRefGoogle Scholar
  61. 61.
    Frenkel, K., Chrzan, K., Troll, W., Teebor, G. W., & Steinberg, J. J. (1986) Radiation-like modification of bases in DNA exposed to tumor promoter-activated polymorphonuclear leukocytes. Cancer Res. 46, 5533–5540PubMedGoogle Scholar
  62. 62.
    Faguet, C. B., Reichard, S. M. & Welter, D. A. (1984) Radiation induced clastogenic factors. Cancer Genet. Cytogenet. 12, 73–83PubMedCrossRefGoogle Scholar
  63. 63.
    Vicker, M. G. & Rensing, L. (1987) Oscillations and the regulation of spatial order in developing systems. In Temporal Disorders in Human Oscillatory Systems, eds. L. Rensing, U. an der Heiden, & M.C. Mackey, (SpringerVerlag, Berlin, Heidelberg), pp. 24–29CrossRefGoogle Scholar
  64. 64.
    Lüning, G., Scheer, J., Schmidt, M. & Ziggel, H. (1989) Early infant mortality in West Germany before and after Chernobyl. Lancet ii, 1081–1083CrossRefGoogle Scholar
  65. 65.
    Matanoski, G. M., Sternberg, A. & Elliot, E. A. (1987) Does radiation exposure produce a protective effect among radiologists? Health Phys. 52, 637–643PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Michael G. Vicker
    • 1
  • Heino Bultmann
    • 1
  • Ulf Glade
    • 1
  • Thomas Häfker
    • 1
  1. 1.Department of BiologyUniversity of BremenBremen 33Federal Republic of Germany

Personalised recommendations