Skip to main content

Development of Multiconfigurational Green’s Function Approaches

  • Conference paper

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 52))

Abstract

With Green’s function or propagator techniques electronic excitation energies, ionization potentials, electron affinities, electronic transition probabilities, and other response properties can be calculated. These techniques have several significant advantages over more conventional ab initio approaches to electronic energy difference calculations such as ΔMCSCF, ΔCI, and A coupled cluster (ΔCC). Included among these are: 1) For excitation, ionization, and attachment energies propagator techniques mimic Δ full CI at a small fraction of the computer time and cost; 2) The polarization propagator is the correct linear response of a system with a fully optimized (for both orbitals and state expansion coefficients) wavefunction to an external perturbation (e.g. an electromagnetic field) so response properties such as frequency dependent polarizabilities are calculated reliably and accurately, and 3) The length, velocity, and acceleration forms of the oscillator strength are equal in the limit of a complete basis set of orbitals.

We have been developing, studying, and applying both single-particle multiconfigurational Green’s function and the particle-hole multiconfigurational Green’s function. MC based techniques are necessary for application to highly correlated systems where more traditional perturbational approaches are inadequate. We have furthermore been formulating tensor-coupled Green’s function approaches so that these methods can be correctly applied to open shell atoms and molecules.

In this talk I will review our MC Green’s function techniques. The single-particle approaches are known as the multiconfigurational electron propagator (MCEP) and the multiconfigurational spin tensor electron propagator (MCSTEP). The p-h multiconfigurational Green’s function approach is equivalent to the multiconfigurational linear response (MCLR) or the multiconfiguration time-dependent Hartree-Fock (MCTDHF). I will present and discuss several examples using these methods including for the ionization potentials of NH2, the excitation energies of CH+, the polarizability of acetylene, and the transition moments between excited triplet states of N2. In a final example I will discuss the tensor coupled MCTDHF with application to O2

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linderberg J, Öhrn Y (1973) Propagators in Quantum Chemistry. Academic, New York.

    Google Scholar 

  2. Zubarev DN (1960) Usp His-Nank 71:1 [English Translation — (1960) Sopv Phys Usp 3:320).

    Google Scholar 

  3. See, for example: Ohm Y, Born G (1981) Adv Quantum Chem 13:1, and references therein.

    Article  Google Scholar 

  4. See, for example: von Niessen W, Schirmer J and Cederbaum LS (1984) Comp Phys Reports 1:57.

    Article  Google Scholar 

  5. See, for example: Simons J (1977) Ann Rev Phys Chem 28:1, and references therein.

    Article  Google Scholar 

  6. See, for example: Herman MF, Freed KF and Yeager DL (1981) Adv Chem Phys 48:1, and references therein.

    Article  CAS  Google Scholar 

  7. Albertsen P and Jørgensen P (1979) J Chem Phys 70:3254.

    Article  CAS  Google Scholar 

  8. Swanstrøm P and Jørgensen P (1979) ibid 71:4652.

    Article  Google Scholar 

  9. Purvis GD, Öhrn Y (1975) J Chem Phys 62:2045.

    Article  CAS  Google Scholar 

  10. Cederbaum LS and Schirmer J (1974) Z Physik 271:221.

    Article  CAS  Google Scholar 

  11. Schirmer J, Cederbaum and von Niessen, W (1981) Chem Phys 56:285.

    Article  CAS  Google Scholar 

  12. Tomasello P, von Niessen W, Schirmer J and Cederbaum LS (1986) J Electron Spec 40:193.

    Article  CAS  Google Scholar 

  13. Nichols JA, Yeager DL and Jørgensen P (1984) J Chem Phys 80:293.

    Article  CAS  Google Scholar 

  14. Golab JT, Thies BS, Yeager DL and Nichols JA (1986) J Chem Phys 84:284.

    Article  CAS  Google Scholar 

  15. Samson JAR, Gardner JL and Haddad GN (1977) J Electron Spectrosc 12:28.

    Article  Google Scholar 

  16. Baker J, Nobes R and Radom L (1986) J Comp Chem 7:349.

    Article  CAS  Google Scholar 

  17. Ortiz JV (1987) Chem Phys Lett 136:387.

    Article  CAS  Google Scholar 

  18. Nakasuji H (1983) Int J Quantum Chem S17:241.

    Google Scholar 

  19. Haque A and Kaldor U (1986) Int J Quantum Chem XXXIX:425.

    Article  Google Scholar 

  20. Graham RL, Golab JT, Yeager DL (1988) J Chem Phys 88:2572.

    Article  CAS  Google Scholar 

  21. Dunlavey SJ, Dyke JM, Jonathan N and Morris A (1980) Mol Phys 39:1121.

    Article  CAS  Google Scholar 

  22. Dyke JM, Jonathan N and Morris A (1982) Int Rev Phys Chem 2:3.

    Article  CAS  Google Scholar 

  23. Golab J and Yeager D (1987) J Chem Phys 87:2925.

    Article  CAS  Google Scholar 

  24. Kubo R (1959) J Phys Soc Japan 12:570.

    Google Scholar 

  25. See Oddershede J, Jørgensen P and Yeager DL (1984) Compt Phys Rep 2:33 and references therein.

    Article  CAS  Google Scholar 

  26. Dunning TH and McKoy V (1967) J Chem Phys 47:1735.

    Article  CAS  Google Scholar 

  27. Jørgensen P and Linderberg J (1970) Int J Quantum Chem 4:587.

    Article  Google Scholar 

  28. See McCurdy CW, Rescigno T, Yeager DL and McKoy V (1977) In: Schaefer III HF (ed) Methods of Electronic Structures. Plenum Press, New York and references therein.

    Google Scholar 

  29. Yeager DL and Jørgensen P (1979) Chem Phys Lett 65:77.

    Article  CAS  Google Scholar 

  30. Albertsen P, Jørgensen P and Yeager DL (1980) Mol Phys 41:409.

    Article  CAS  Google Scholar 

  31. Banerjee A, Kenney III J and Simons J (1979) Int J Quantum Chem 16:1209.

    Article  CAS  Google Scholar 

  32. McWeeny R (1983) Int J Quantum Chem 23:405.

    Article  CAS  Google Scholar 

  33. Jaszunski M and McWeeny R (1982) Mol Phys 46:863.

    Article  CAS  Google Scholar 

  34. Dalgaard E (1980) J Chem Phys 72:816.

    Article  CAS  Google Scholar 

  35. Dalgaard E (1982) Phys Rev A26:42.

    Google Scholar 

  36. Jørgensen P and Simons J (1981) Second Quantization Based Methods in Quantum Chemistry. Academic Press, New York.

    Google Scholar 

  37. Graham R, Yeager DL, Olsen J, Jørgensen P, Harrison R, Zarrabian S and Bartlett R (1986) J Chem Phys 85:6544.

    Article  CAS  Google Scholar 

  38. Graham R and Yeager DL (1987) Int J Quantum Chem 31:99.

    Article  CAS  Google Scholar 

  39. Martinson I, Gaupp A and Curtis LJ (1974) J Phys B7:L463.

    Google Scholar 

  40. Albertsen P, Jørgensen P and Yeager DL (1980) Int J Quantum Chem S14:249.

    Google Scholar 

  41. Gready JE, Bacskay GNB and Hush NS (1977) Chem Phys 23:9.

    Article  CAS  Google Scholar 

  42. Werner H and Meyer W (1976) Phys Rev A13:3.

    Google Scholar 

  43. Voegel T, Hinze J and Tobin J (1979) J. Chem. Phys. 790:107.

    Google Scholar 

  44. Stevens WJ and Billingsley II, JP (1972) Phys Rev A6:855.

    Google Scholar 

  45. Kolker H and Michels HH (1965) J Chem Phys 43:1027.

    Article  CAS  Google Scholar 

  46. Maeder F and Kutzelnigg W (1979) Chem Phys 42:95.

    Article  CAS  Google Scholar 

  47. Kelly HP (1964) Phys Rev 136:B896.

    Article  Google Scholar 

  48. Jørgensen P, Oddershede J, Albertsen P and Beebe NHF (1978) J Chem Phys 68:2533.

    Article  Google Scholar 

  49. Diercksen GHF and Sadlej AJ (1982) Chem Phys 65:407.

    Article  CAS  Google Scholar 

  50. Sims JDS and Rumble Jr JR (1973) Phys Rev 8A:2231.

    Google Scholar 

  51. Scott MJ and Zaremba E (1980) Phys Rev A21:12.

    Google Scholar 

  52. Bartolotti LJ (1984) J Chem Phys 80:5687.

    Article  CAS  Google Scholar 

  53. Rizzo A, Graham RL, Yeager DL (1988) J Chem Phys 89:1533.

    Article  CAS  Google Scholar 

  54. Jazunski M, Rizzo A, Yeager DL (1988) J Chem Phys 1 September 1988.

    Google Scholar 

  55. Jazunski M. Rizzo A, Yeager DL (1988) Chem Phys Lett 149:79.

    Article  Google Scholar 

  56. Dunning TH (1970) J Chem Phys 53:2823.

    Article  CAS  Google Scholar 

  57. Dunning TH, Hay PJ (1977) In: Schaefer HF (ed) Modern Methods of Electronic Structure, Plenum, New York.

    Google Scholar 

  58. Huzinaga S (1965) J Chem Phys 42:1293.

    Article  Google Scholar 

  59. Yeager D, Olsen J and Jørgensen P (1981) Int J Quantum Chem S15:151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yeager, D.L. (1989). Development of Multiconfigurational Green’s Function Approaches. In: Kaldor, U. (eds) Many-Body Methods in Quantum Chemistry. Lecture Notes in Chemistry, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93424-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93424-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51027-7

  • Online ISBN: 978-3-642-93424-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics