Band Tailing in Polycrystalline and Disordered Silicon

  • J. H. Werner
Part of the Springer Proceedings in Physics book series (SPPHY, volume 35)


The energy distribution of electronic defects at silicon grain boundaries is discussed. Experimentally detected tail states at bicrystal boundaries as well as at grain boundaries in fine-grained films are compared to the energy distribution of band gap states at the SiO2/Si-interface and in amorphous Si. It is speculated that band tails in disordered Si generally arise from short wavelength potential fluctuations due to spatial disorder; these quantum well fluctuations localize free carriers. The experimentally found asymmetry in the density of states (DOS) for tails at grain boundaries, SiO2/Si-interfaces and amorphous Si is ascribed to the different masses of localized electrons and holes and to stronger potential fluctuations at the valence band edge due to dihedral disorder.


Valence Band Band Edge Amorphous Silicon Conduction Band Edge Valence Band Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.J. Queisser and J. H. Werner, Mat. Res. Soc. Symp. Proc. 106. 53 (1988)CrossRefGoogle Scholar
  2. [1a]
    see also HJ. Queisser, Mat. Res. Soc. Symp. Proc. 14, 323 (1983)CrossRefGoogle Scholar
  3. [2]
    G.E. Pike and C.H. Seager, J. Appl. Phys. 50, 3414 (1979)CrossRefGoogle Scholar
  4. [2a]
    C.H. Seager and G.E. Pike, Appl. Phys. Lett. 35, 709 (1979)CrossRefGoogle Scholar
  5. [3]
    J. Werner, in Polycrystalline SemiconductorsPhysical Properties and Applications, G. Harbeke,ed. (Springer, Berlin 1985), page 77Google Scholar
  6. [4]
    J. Werner, W. Jantsch, and H.J. Queisser, Sol. St. Comm. 42, 415 (1982)CrossRefGoogle Scholar
  7. [5]
    A.J. Madenach and J. Werner, Phys. Rev. Lett. 55, 1212 (1985)CrossRefGoogle Scholar
  8. [6]
    A.J. Madenach, J. Werner, and F.J. Stützler, in Proc. 18th Photovoltaics Spec. Conf. (IEEE, Las Vegas, 1985), p.1080Google Scholar
  9. [7]
    S. Hirae, M. Hirose, and Y. Osaka, J. Appl. Phys. 51, 1043 (1980)CrossRefGoogle Scholar
  10. [8]
    H.C. de Graaff, N. Huybers, and J.C. de Groot, Solid State Electron. 25, 67 (1982)CrossRefGoogle Scholar
  11. [9]
    D.M. Taylor and D.W. Tong, J. Appl. Phys. 56, 1881 (1984)CrossRefGoogle Scholar
  12. [10]
    J. Werner and M. Peisl, Phys. Rev. B31, 6881 (1985)Google Scholar
  13. [11]
    W.B. Jackson, N.M. Johnson, and D.K. Biegelsen, Appl. Phys. Lett. 43, 195 (1983)CrossRefGoogle Scholar
  14. [12]
    G. Fortunato, D.B. Meakin, P. Migliorato, and P.G. Le Comber, Phil. Mag. B 57, 573 (1988)Google Scholar
  15. [13]
    M. Peisl and A.W. Wieder, IEEE Trans. Electr. Dev. ED-30. 1792 (1983)CrossRefGoogle Scholar
  16. [14]
    B. Faughnan, Appl. Phys. Lett. 50, 290 (1987)CrossRefGoogle Scholar
  17. [15]
    J. Werner and M. Peisl, Mat. Res. Soc. Symp. Proc. 46, 575 (1985)CrossRefGoogle Scholar
  18. [16]
    K. Winer and L. Ley, Phys. Rev. B36, 6072 (1987)Google Scholar
  19. [17]
    K. Winer, I. Hirabayashi, and L. Ley, Phys. Rev. Lett. 60, 2697 (1988)CrossRefGoogle Scholar
  20. [18]
    E.H. Nicollian and J.R. Brews, MOS Physics and Technology (John Wiley and Sons, New York 1982) chapter 16Google Scholar
  21. [19]
    N.M. Johnson, D.K. Biegelsen, and M.D. Moyer in The Physics of MOS Insulators, edited by G. Lucovsky, S.T. Pantilides, and G.F.L. Galeener (Pergamon, New York 1980), p.311Google Scholar
  22. [20]
    R.B. Laughlin, J.D. Joannopoulos, and D.J. Chali, in The Physics of SiO 2 and its Interfaces, edited by S.T. Pantilides (Pergamon, New York 1978), p.321Google Scholar
  23. [21]
    J. Singh and A. Madhukar, J. Vac. Sci. Technol. 19, 437 (1981)CrossRefGoogle Scholar
  24. [21a]
    J. Singh and A. Madhukar, Appl. Phys. Lett. 38, 884 (1981)CrossRefGoogle Scholar
  25. [22]
    J.D. Joannopoulos, Phys. Rev. B16, 2764 (1977)Google Scholar
  26. [23]
    J. Singh, Phys. Rev. B23, 2156 (1981)Google Scholar
  27. [24]
    A.J. Madenach, Thesis (University Stuttgart, 1984) unpublishedGoogle Scholar
  28. [25]
    J. Werner and H. Strunk, J. Phys. Colloque (Paris) 43, C1–89 (1982)Google Scholar
  29. [26]
    A.J. Madenach and J.H. Werner, Phys. Rev. B in pressGoogle Scholar
  30. [27]
    V. Sa-Yakanit and H.R. Glyde, Comm. Cond. Mat. Phys. 13, 35 (1987)Google Scholar
  31. [28]
    M.H. Cohen, M.Y. Chou, E.N. Economou, S. John, and C.M. Soukoulis, IBM J. Res. Develop. 32, 82 (1988)CrossRefGoogle Scholar
  32. [29]
    B.I. Halperin and M. Lax, Phys. Rev..148, 722 (1966)CrossRefGoogle Scholar
  33. [30]
    C.M. Soukoulis, M.H. Cohen, and E.N. Economou, Phys. Rev. Lett. 53, 616 (1984)CrossRefGoogle Scholar
  34. [31]
    W. Sritakool, V. Sayakanit, H.R. Glyde, Phys. Rev. B33, 1199 (1986)Google Scholar
  35. [32]
    N. Bacalis, E.N. Economou, M.H. Cohen, Phys. Rev. B37, 2714 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • J. H. Werner
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartFed. Rep. of Germany

Personalised recommendations