Multigrid Monte Carlo Methods

  • E. LohJr.
Part of the Springer Proceedings in Physics book series (SPPHY, volume 33)


This paper is intended to be a tutorial on multigrid Monte Carlo techniques, illustrated with two examples. Path-integral quantum Monte Carlo is seen to take only a finite amount of computer time even as the paths are discretized on infinitesimally small scales. A method for eliminating critical slowing down completely — even for models with discrete degrees of freedom, as in Potts models, or discrete excitations, such as isolated vortices in the XY model — is presented.


Multigrid Method Coarse Level World Line Imaginary Time Dynamical Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Kasteleyn and C.M. Fortuin, J. Phys. Soc. Jpn. Suppl. 26s, 11 (1969); andADSGoogle Scholar
  2. C.M. Fortuin and P.W. Kasteleyn, Physica (Utrecht) 57, 536 (1972).MathSciNetADSCrossRefGoogle Scholar
  3. 2.
    M. Sweeny, Phys. Rev. B27, 4445 (1983).ADSGoogle Scholar
  4. 3.
    R.H. Swendsen and J.S. Wang, Phys. Rev. Lett. 58, 86 (1987).ADSCrossRefGoogle Scholar
  5. 4.
    J. Goodman and A.D. Sokal, Phys. Rev. Lett. 56, 1015 (1986).ADSCrossRefGoogle Scholar
  6. 5.
    R.G. Edwards and A.D. Sokal, unpublished.Google Scholar
  7. 6.
    A. Brandt, Multilevel Computations: Review and Recent Developments, in Preliminary Proceedings of the Third Copper Mountain Conference on Multigrid Methods (April 1987).Google Scholar
  8. 7.
    D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, Jr., submitted to Physical Review Letters.Google Scholar
  9. 8.
    See, for example, M. Suzuki, J. of Math. Phys. 26, 601 (1985).ADSMATHCrossRefGoogle Scholar
  10. 9.
    M. Creutz and B. Freedman, unpublished.Google Scholar
  11. 10.
    See, for example, E. Domany, Phys. Rev. Lett. 52, 871 (1984).MathSciNetADSCrossRefGoogle Scholar
  12. 11.
    D. Kandel, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • E. LohJr.
    • 1
  1. 1.Theoretical Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations