Skip to main content

Free-Ion Hamiltonian Unfilled Configuration nℓN [N < 2(2ℓ + 1)]

  • Chapter
Angular Momentum Theory Applied to Interactions in Solids

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 47))

  • 309 Accesses

Abstract

The approximations made in the analysis of the spectra of ions are not new. In fact, they go back to the old Bohr orbit theory. Since many readers may not be familiar with these assumptions and may not remember many of the concepts and most of the technical jargon used in the field of atomic spectra, we review some of these briefly. We stick strictly to those concepts which apply to transition-metal ions and rare-earth ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Annotated Bibliography and References

  • Bishton, S. S., and D. J. Newman (1970), Parametrization of the Correlation Crystal Field, J. Phys. C 3, 1753.

    Google Scholar 

  • Carnall, W. T., H. Crosswhite, and H. M. Crosswhite (1978), Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3, Argonne National Laboratory, ANL-78-XX-95.

    Google Scholar 

  • Condon, E. U., and H. Odabasi (1980), Atomic Structure, Cambridge University Press, Cambridge, U.K., chapters 5 and 8.

    Google Scholar 

  • Condon, E. U., and G. H. Shortley (1959), The Theory of Atomic Spectra, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Cowan, R. D., and D. C. Griffin (1976), Approximate Relativistic Corrections to Atomic Radial Wave Functions, J. Opt. Soc. Am. 66, 1010.

    Article  CAS  Google Scholar 

  • Dieke, G. H. (1968), Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience, New York, NY, p 200.

    Google Scholar 

  • Dieke, G. H., and H. M. Crosswhite (1963), The Spectra of the Doubly and Triply Ionized Rare Earths, Appl. Opt. 2, 675.

    Article  CAS  Google Scholar 

  • Fraga, S., K. M. S. Saxena, and J. Karwowski (1976), Physical Science Data 5, Handbook of Atomic Data, Elsevier, New York, NY.

    Google Scholar 

  • Freeman, A. J., and R. E. Watson (1962), Theoretical Investigation of Some Magnetic and Spectroscopic Properties of Rare-Earth Ions, Phys. Rev. 127, 2058.

    Article  CAS  Google Scholar 

  • Judd, B. R. (1963), Operator Techniques in Atomic Spectroscopy, McGraw-Hill, New York, NY. Chapters 1, 2, 3, and 4 are very pertinent to this section.

    Google Scholar 

  • Low, W. (1958a), Paramagnetic and Optical Spectra of Divalent Nickel in Cubic Crystalline Fields, Phys. Rev. 109, 247.

    Article  CAS  Google Scholar 

  • Low, W. (1958b), Paramagnetic and Optical Spectra of Divalent Cobalt in Cubic Crystalline Fields, Phys. Rev. 109, 256.

    Article  CAS  Google Scholar 

  • Morrison, C. A. (1980, January 15), Host Dependence of the Rare-Earth Ion Energy Separation 4FN — 4FN-1nJℓ, J. Chem. Phys. 72, 1001.

    Google Scholar 

  • Morrison, C. A., and R. P. Leavitt (1982), Spectroscopic Properties of Triply Ionized Lanthanides in Transparent Host Materials, in Volume 5, Handbook of the Physics and Chemistry of Rare Earths, ed. by K. A. Gschneidner, Jr., and L. Eyring, North-Holland Publishers, New York, NY.

    Google Scholar 

  • Morrison, C. A., D. R. Mason, and C. Kikuchi (1967), Modified Slater Integrals for an Ion in a Solid, Phys. Lett. 24A, 607.

    Google Scholar 

  • Newman, D. J. (1973), Slater Parameter Shifts in Substituted Lanthanide Ions, J. Phys. Chem. Solids 34, 541.

    Article  CAS  Google Scholar 

  • Nielson, C. W., and G. F. Koster (1963), Spectroscopic Coefficients for pn, dn and fn Configurations, MIT Press, Cambridge, MA.

    Google Scholar 

  • Schiff, L. I. (1968), Quantum Mechanics, 3rd ed., McGraw-Hill, New York, NY.

    Google Scholar 

  • Trees, R. E. (1964), 4f3 and 4f25d Configuration of Doubly Ionized Praseodymium (Pr III), J. Opt. Soc. Am. 54, 651.

    Article  CAS  Google Scholar 

  • Uylings, P. H. M., A. J. J. Raassen, and J. F. Wyart (1984), Energies of N Equivalent Electrons Expressed in Terms of Two-Electron Energies and Independent Three-Electron Parameters: A New Complete Set of Orthogonal Operators: II.—Application of 3dN Configurations, J. Phys. B17, 4103.

    Google Scholar 

  • Wortman, D. E., R. P. Leavitt, and C. A. Morrison (1973, December), Analysis of the Ground Configuration of Trivalent Thulium in Single-Crystal Yttrium Vanadate, Harry Diamond Laboratories, HDL-TR-1653.

    Google Scholar 

  • Wybourne, B. G. (1965), Spectroscopic Properties of Rare Earths, Wiley, New York, NY, p 72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morrison, C.A. (1988). Free-Ion Hamiltonian Unfilled Configuration nℓN [N < 2(2ℓ + 1)]. In: Angular Momentum Theory Applied to Interactions in Solids. Lecture Notes in Chemistry, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93376-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93376-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18990-9

  • Online ISBN: 978-3-642-93376-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics