The shift operators

Part of the Lecture Notes in Chemistry book series (LNC, volume 42)


The interactions we deal with in physics involve one or two particles and therefore are represented by one and two—particle operators. Some formalisms introduce more than two—particle operators. In general calculating matrix elements we would like to separate the physical information, the part that depends on the p-particle operator  and thus is expressed by the p-dimensional integrals
$$\int {\phi _{{{{a}_{1}}}}^{*}{\mkern 1mu} \left( 1 \right) \ldots \phi _{{{{a}_{p}}}}^{*}{\mkern 1mu} \left( p \right)} {\mkern 1mu} \hat{A}\left( {1 \ldots p} \right){\mkern 1mu} {{\phi }_{{{{b}_{1}}}}}{\mkern 1mu} \left( 1 \right) \ldots {{\phi }_{{{{b}_{p}}}}}{\mkern 1mu} \left( p \right)d{{x}_{1}}..d{{x}_{p}}$$


Density Matrix Pure Spin Shift Operator Replacement Operator Tensor Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. Duch
    • 1
    • 2
  1. 1.Max-Planck-Institut für Physik und AstrophysikGarching bei MünchenDeutschland
  2. 2.Instytut FizykiUMKToruńPoland

Personalised recommendations