An Analysis of One- and Two-Dimensional Patterns in a Mechanical Model for Morphogenesis

  • P. K. Maini
  • J. D. Murray
  • G. F. Oster
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 66)


In early embryonic development, fibroblast cells move through an extracellular matrix (ECM) exerting large traction forces which deform the ECM. We model these mechanical interactions mathematically and show that the various effects involved can combine to produce pattern in cell density. A linear analysis exhibits a wide selection of dispersion relations, suggesting a richness in pattern forming capability of the model. A nonlinear bifurcation analysis is presented for a simple version of the governing field equations. The one-dimensional analysis requires a non-standard element. The two-dimensional analysis shows the possibility of roll and hexagon pattern formation. A realistic biological application to the formation of feather germ primordia is briefly discussed.


Dispersion Relation Contractile Force Adhesive Site Hexagonal Pattern Homogeneous Steady State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Busse, P. H. (1983). Patterns of bifurcations in plane layers and spherical shells, in Modelling of Patterns in Space and Time (ed. W. Jager & J. D. Murray, (1984)) Proceedings, Springer-Verlag, Heidelberg, pp 51–60.Google Scholar
  2. [2]
    Christopherson, D. G. (1940). Note on the vibration of membranes. Quart. J. of Math., 11, 63–65.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Davidson, D. (1963). The mechanism of feather pattern development in the chick. 1. The time determination of feather position. J. Embryol. Exp. Morph., 74, 245–259.Google Scholar
  4. [4]
    Harris, A. K. (1973). Behaviour of cultured cells on substrata of variable adhesiveness. Exp. Cell Res., 77, 265–297.CrossRefGoogle Scholar
  5. [5]
    Harris, A. K., Stopak, D. & Wild, P. (1961). Fibroblast traction as a mechanism for collagen morphogenesis. Nature, 290, 249–251.CrossRefGoogle Scholar
  6. [6]
    Lara Ochoa, P. & Murray, J. D. (1963). A non-linear analysis for spatial structure in a reaction diffusion model. Bull. Math. Biol. 45, 917–930.MathSciNetGoogle Scholar
  7. [7]
    Maini, P. K., Murray, J. D. & Cster, G. P. (1965). A mechanical model for biological pattern formation: A nonlinear bifurcation analysis. Dundee Conference (1964) on “Partial and Ordinary Differential Equations.” (to appear in the proceedings.) Springer-Verlag, Heidelberg.Google Scholar
  8. [8]
    Matkowsky, B. J. (1970). A simple non-linear dynamic stability problem. Bull. iter. Math. Soc., 620–625.Google Scholar
  9. [9]
    Meinhardt, H. (1962). Models of biological pattern formation. Academic Press, London.Google Scholar
  10. [10]
    Murray, J. D. (1977). Lectures on non-linear differential equation models in biology. Oxford University Press: Oxford.Google Scholar
  11. [11]
    Murray, J. D. (1961 a). On pattern formation mechanisms for Lepidopteran wing patterns and mammalian coat markings. Phil. Trans. Roy. Soc. Lond. B295, 473–496.Google Scholar
  12. [12]
    Murray, J. D. (1961 b). A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol., 88, 161–199.CrossRefGoogle Scholar
  13. [13]
    Murray, J. D. & Cster, G. P. (1964 a). Generation of biological pattern and form. I. M. A. J. Maths. Appl. to Biol. & Med., 1, 51–75.CrossRefGoogle Scholar
  14. [14]
    Murray, J. D. & Oster, G. P. (1964 b). Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol., 19, 265–279.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Odell, G., Cster G. P., Bumside, B. & Alberch, P. (1961). The mechanical basis of morphogenesis I: Epithelial folding and invagination. Devl. Biol., 85, 446–462.CrossRefGoogle Scholar
  16. [16]
    Oster, G. P., Murray J. D. & Harris, A. K. (1963). Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morph. 78, 83–125.Google Scholar
  17. [17]
    Oster, G. P., Murray, J. D. & Maini, P. K. (1985). A model for chorrirogenlc condensations In the developing limb: The role of extracellular matrix and cell tractions. J. Embryol. Exp. Morph. (to appear).Google Scholar
  18. [18]
    Purcell, E. M. (1977). Life at low Reynolds number. Aner. J. of Phys., 45, 3–11.Google Scholar
  19. [19]
    Rawles, M. (1963). Tissue Interactions In scale and feather development as studied in dermal-epidermal recombinations. J. Embryol. Exp. Morph., 11, 765–789.Google Scholar
  20. [10]
    Stuart, E. S. & Moscona, A. A. (1967). Embryonic morphogenesis: Role of fibrous lattice in the development of feathers and feather patterns. Science, 157, 947–948.CrossRefGoogle Scholar
  21. [21]
    Tickel, C., Summerbell, D. & Wolpert, L. (1975). Positional signalling and specification of digits in chick limb morphogenesis. Nature Lond., 254, 199–202.CrossRefGoogle Scholar
  22. [22]
    Trinkaus, J. P. (1984). Cells into organs: The forces that shape the embryo. (Prentice-Hall).Google Scholar
  23. [23]
    Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond., B237, 37–73.Google Scholar
  24. [24]
    Wessels, N. K. (1965). Morphology and proliferation during early feather development. Dev. Biol., 12, 131–153.CrossRefGoogle Scholar
  25. [25]
    Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol., 25, 1–47.CrossRefGoogle Scholar
  26. [26]
    Wolpert, L. (1981). Positional Information and pattern formation. Phil. Trans. Roy. Soc. Lond. B295. 441–450.Google Scholar
  27. [27]
    Wolpert, L., Hicklin, J. S. Hombruch, A. (1971). Positional Information and pattern regulation in regeneration of hydra. Symp. Soc. exp. Biol., 25, 391–415.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. K. Maini
    • 1
  • J. D. Murray
    • 1
  • G. F. Oster
    • 2
  1. 1.Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Department of BiophysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations