Skip to main content

On Different Mechanisms for Membrane Potential Bursting

  • Conference paper

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 66))

Abstract

A number of mathematical models have been proposed to describe the electrical bursting activity of biological excitable membrane systems. Many of these models have been formulated for specific applications [4,5,14]. One of our goals has been to understand the basic underlying qualitative structure of these models and to distinguish, possibly different, classes of models for bursting. In this paper we contrast two examples which illustrate different mathematical mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W. B., and J. A. Benson. 1985. The generation and modulation of endogenous rhythmicity in the Aplysia bursting pacemaker neurone R15. Prog. Biophys. Molec. Biol. 46:1–49.

    Article  Google Scholar 

  2. Atwater, I., C. M. Dawson, A. Scott, G. Eddiestone, E. Rojas. 1980. The nature of the oscillatory behavior in electrical activity for pancreatic β-cell. J. of Hormone and Metabolic Res., Suppl. 10:100–107.

    Google Scholar 

  3. Beigelman, P. M., B. Ribalet, and I. Atwater. 1977. Electrical activity of mouse pancreatic beta-cells II. Effects of glucose and arginine. J. Physiol., Paris 71:201–217.

    Google Scholar 

  4. Both, R., W. Finger, and R. A. Chaplain. 1976. Model predictions of the ionic mechanisms underlying the beating and bursting pacemaker characteristics of mulloscan neurons. Biiol. Cybernetics 23:1–11.

    Article  Google Scholar 

  5. Chay, T. R., and J. Keizer. 1983. Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42:181–190.

    Article  Google Scholar 

  6. Chay, T. R., and J. Keizer. Theory of the effect of extracellular potassium on oscillations in the pancreatic β-cell. Biophys. J. (in press).

    Google Scholar 

  7. Doedel, E. J. 1981. AUTO: A program for the automatic bifurcation and analysis of autonomous systems, (Proc. 10th Manitoba Conf. on Num. Math. and Comput., Winnipeg, Canada), Cong. Num. 30:265–284.

    MathSciNet  Google Scholar 

  8. Ermentrout, G. B., and N. Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Applied Math. (in press).

    Google Scholar 

  9. FitzHugh, R. 1961. Impulses and physiological states in models of nerve membrane. Biophys. J. 1:445–466.

    Article  Google Scholar 

  10. Hindmarsh, J. L., and R. M. Rose. 1984. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221:87–102.

    Article  Google Scholar 

  11. Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond) 117:500–544.

    Google Scholar 

  12. Honerkamp, J., G. Mutschler, and R. Seitz. 1985. Coupling of a slow and a fast oscillator can generate bursting. Bull. Math. Biol. 47:1–21.

    MATH  MathSciNet  Google Scholar 

  13. Nagumo, J. S., S. Arimoto, and S. Yoshizawa. 1962. An active pulse transmission line simulating nerve axon. Proc. IRE. 50:2061–2070.

    Article  Google Scholar 

  14. Plant, R. E., and M. Kim. 1976. Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. Biophys. J. 16:227–244.

    Article  Google Scholar 

  15. Plant, R. E. 1981. Bifurcation and resonance in a model for bursting nerve cells. J. Math. Biology 11:15–32.

    Article  MATH  MathSciNet  Google Scholar 

  16. Rinzel, J., and W. C. Troy. 1982. Bursting phenomena in a simplified Oregonator flow system model. J. Chem. Phys. 76:1775–1789.

    Article  MathSciNet  Google Scholar 

  17. Rinzel, J. Bursting oscillations in an excitable membrane model. In Proc. 8th Dundee Conf. on thé Theory of Ordinary and Partial Differential Equations (eds., B. D. Sleeman, R. J. Jarvis, and D. S. Jones). Springer-Verlag (in press).

    Google Scholar 

  18. Scott, A. M., I. Atwater, and E. Rojas. 1981. A method for the simultaneous measurement of insulin release and β-cell membrane potential in single mouse islet of Langerhans. Diabetologia 21:470–475.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rinzel, J., Lee, Y.S. (1986). On Different Mechanisms for Membrane Potential Bursting. In: Othmer, H.G. (eds) Nonlinear Oscillations in Biology and Chemistry. Lecture Notes in Biomathematics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93318-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93318-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16481-4

  • Online ISBN: 978-3-642-93318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics