Skip to main content

The Art of Walking on Fractal Spaces and Random Media

  • Conference paper
Physics of Finely Divided Matter

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 5))

  • 382 Accesses

Abstract

Since we know that mountain shapes are natural fractals, the title would be appropriate for a lecture on climbing the Mont Blanc, the Aiguille Verte or any of the peaks we can contemplate from Les Houches. My subject is more down to earth and only consists in a short review of recent work on different types of walks on fractal lattices and on random systems such as percolation clusters. The first part is a reminder of geometrical and physical aspects of dimensionality, and discusses why several dimensions are needed to characterize fractal objects. The second part is devoted to “simple” walks, mainly random walks, and gives a short account of classical diffusion and conduction in random media. Several reviews of these aspects have appeared recently, by ALEXANDER |1|, MITESCU and ROUSSENQ |2|, RAMMAL |3| and AHARONY |4|, and the reader is referred to these papers for deeper discussions and for technical points. The following parts deal with “advanced” walks, where additional rules are specified: this leads to a large variety of problems and to a wealth of new physical effects. The examples include random walks in the presence of traps, biased walks (e.g., dispersion of particles in a flow through a porous medium), selfavoiding walks. For all these problems, the lack of translational invariance of the lattice (fractal or random) introduces new features, and even the simplest situations may provide surprises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Alexander: “Percolation Structures and Processes”, p. 149, G. Deutscher, R. Zallen and J. Adler eds. (Higler, Bristol, 1983).

    Google Scholar 

  2. C. Mitescu, J. Roussenq: “Percolation Structures and Processes”, p. 81.

    Google Scholar 

  3. R. Rammal: J. Stat. Phys. 36, 547 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. A. Aharony: “Fractals in Statistical Physics”, Proceedings of the Int. Conf. on Collective Phenomena, Tel Aviv (1984).

    Google Scholar 

  5. B. Mandelbrot: “The fractal Geometry of Nature”, Freeman, San Francisco (1982).

    MATH  Google Scholar 

  6. J.D. Farmer, E. Ott and J.A. Vorke: Physica 7D, 153 (1983).

    ADS  MathSciNet  Google Scholar 

  7. S. Kirkpatrick: “Ill-Condensed Matter”, Les Houches 1978, P. 374 (North Holland, 1979).

    Google Scholar 

  8. Y. Gefen, A. Aharony, B. Mandelbrot, S. Kirkpatrick: Phys. Rev. Lett. 47, 1771 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Benzi, G. Paladin, G. Parisi, A. Vulpiani: J. Phys. A 17, 3521 (1984).

    ADS  MathSciNet  Google Scholar 

  10. D. Dhar: J. Math. Phys. 18, 577 (1977).

    Article  ADS  Google Scholar 

  11. S. Havlin, R. Nossal: J. Phys. A 17, L427 (1984).

    ADS  MathSciNet  Google Scholar 

  12. R. Rammal, J.C. Angles d’Auriac, A. Benoit: J. Phys. A 17, L491 (1984).

    ADS  Google Scholar 

  13. J. Vannimenus, J.P. Nadal, H. Martin: J. Phys. A 17, L351 (1984).

    ADS  MathSciNet  Google Scholar 

  14. P. Arassberger: Math. Biosci. 62, 157 (1983).

    Article  Google Scholar 

  15. G. McKay, N. Jan: J. Phys. A 17, L757 (1984).

    ADS  Google Scholar 

  16. P. Meakin, I. Majid, S. Havlin, H.E. Stanley: J. Phys. A 17, L975 (1984).

    ADS  Google Scholar 

  17. P. Grassberger: J. Phys. A 18, L215 (1985).

    ADS  MathSciNet  Google Scholar 

  18. R. Pike, H. Stanley: J. Phys. A 14, L169 (1981).

    ADS  Google Scholar 

  19. S. Alexander: in this volume; P. Sen: ibid; I. Webman: ibid.

    Google Scholar 

  20. S. Alexander, R. Orbach: J. Physique Lettres 44, L-13 (1983).

    Google Scholar 

  21. H. Herrmann, B. Derrida, J. Vannimenus: Phys. Rev. B 30, 4080 (1984).

    Article  ADS  Google Scholar 

  22. J.G. Zabolitzby: Phys. Rev. B 30, 4077 (1984).

    Article  ADS  Google Scholar 

  23. D. Hong, S. Havlin, H. Herrmann, H. Stanley: Phys. Rev. B 30, 4083 (1984).

    Article  ADS  Google Scholar 

  24. C.J. Lobb, D.J. Frank: Phys. Rev. B 30, 4090 (1984).

    Article  ADS  Google Scholar 

  25. B. Derrida, D. Stauffer, H.J. Herrmann, J. Vannimenus: J. Physique Lett. 44, L701 (1983).

    Article  Google Scholar 

  26. R. Rammal, G. Toulouse: J. Physique Lett. 44, L13 (1983).

    Article  Google Scholar 

  27. P.G. de Gennes: C.R.A.S. 296, 881 (1983).

    Google Scholar 

  28. P. Evesque: J. Physique 44, 1217 (1983).

    Article  Google Scholar 

  29. M. Donsker, S. Varadhan: Commun. Pure Appl. Math. 32, 721 (1975);

    Article  MathSciNet  Google Scholar 

  30. F Delyon, B. Souillard: Comment Phys. Rev. Lett. 51, 1720 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  31. I. Webman: Phys. Rev. Lett. 52, 220 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Zumofen, A. Blumen, J. Klafter: J. Phys. A 17, L479 (1984).

    ADS  Google Scholar 

  33. I. Webman: J. Stat. Phys. 36, 603 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. J.P. Nadal, J. Vannimenus: J. Physique 46, 17 (1985).

    Article  Google Scholar 

  35. B. Derrida: Phys. Reports 103, 29 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  36. B. Derrida, Y. Pomeau: Phys. Rev. Lett. 48, 627 (1982).

    Article  ADS  Google Scholar 

  37. J.M. Luck: J. Phys. A 17, 2069 (1984).

    ADS  Google Scholar 

  38. J.A. Aronovitz, D.R. Nelson: Phys. Rev. A 30, 2948 (1984).

    Article  Google Scholar 

  39. D.S. Fisher: Phys. Rev. A 30, 960 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  40. P.G. de Gennes: J. Fluid Mech. 136, 189 (1983).

    Article  MATH  ADS  Google Scholar 

  41. D. Dhar: J. Phys. A 17, L257 (1978).

    Google Scholar 

  42. J. Vannimenus: J. Physique Lett. 45, L-1071 (1984).

    MathSciNet  Google Scholar 

  43. D. Dhar: J. Math. Phys. 19, 5 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  44. R. Rammal, G. Toulouse, J. Vannimenus: J. Physique 45, 389 (1984).

    Article  MathSciNet  Google Scholar 

  45. D.J. Klein, W.A. Seitz: J. Physique Lett. 45, L241 (1984).

    Article  Google Scholar 

  46. J. Vannimenus, D. Dhar, M. Knezevic, D. d’Humières, to be published.

    Google Scholar 

  47. M. Knezevic, J. Vannimenus, D. Dhar, to be published.

    Google Scholar 

  48. D. Amit, G. Parisi, L. Peliti: Phys. Rev. B 27, 1635 (1983).

    ADS  MathSciNet  Google Scholar 

  49. J.C. Angles d’Auriac, R. Rammal: J. Phys. A 17, L15 (1984).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vannimenus, J. (1985). The Art of Walking on Fractal Spaces and Random Media. In: Boccara, N., Daoud, M. (eds) Physics of Finely Divided Matter. Springer Proceedings in Physics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93301-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93301-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-93303-5

  • Online ISBN: 978-3-642-93301-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics