Skip to main content

Redundanztechniken

  • Chapter
Book cover Mikroprozessorsysteme
  • 36 Accesses

Zusammenfassung

Zur Erhöhung der Zuverlässigkeit eines Mikroprozessorsystems gibt es prinzipiell zwei Möglichkeiten:

  • Fehler-intoleronz („foult-intolerance“, „fault-ovoidonce“): Unter diesem Begriff versteht man die Eliminierung der Fehlerursachen vor dem Einsatz des Systems. Dazu zählt z. B. die Auswahl besonders zuverlässiger Bauelemente, die unter Streß ausgetestet worden sind, sorgfältige Aufbau- und Abschirmtechniken und natürlich intensive Testverfahren — vor, während und nach dem Zusammenbau des Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. M. Dal Cin Fehl er tolerante Systeme Teubner Studienbücher Bd 50, Teubner Verlag Stuttgart 1979

    Google Scholar 

  2. E Moehle Fehl er tolerante Rechnerstrukturen Arbeitsbericht Bd 10, Nr. 4, 1977, Universität Erlangen Nürnberg

    Google Scholar 

  3. W. C. Carter, W. G. Bouricius A Survey of Foult-Tolerant Computer Architecture and ist Evaluation Computer, Vol 4, No. 1, 1971, pp. 9–16

    Google Scholar 

  4. F. P. Mothur Trends in Fault-Tolerant Computer Architecture Int. Workshop on Computer Architecture, Grenoble, 1973, pp. 1–44

    Google Scholar 

  5. A. Avizienis Architecture of Fault-Tolerant Computing Systems 1975 Int. Symposium of FouIt-Toleront Computing, pp. 3–16

    Google Scholar 

  6. A. Avizienis Fault-Tolerant Systems IEEE Trans on Com. C-25, No. 12, 1976, pp. 1304–1311

    Google Scholar 

  7. A. Avizienis Fault-Tolerant Computing-Progress, Problems, and Prospects 1977 IFIP Congress Proceedings, pp. 405–420

    Google Scholar 

  8. D. R. Bollard Designing Foil-Save Microprocessor Systems Electronics, Jon 4, 1979, pp. 139–143

    Google Scholar 

  9. B. Courtois Some Results About the Efficiency of Simple Mechanisms for the Detection of Microcomputer Malfunctions 1979 Int. Symposium of Fault Tolerant Computing, pp. 71–74

    Google Scholar 

  10. F. Ruf Aspekte bei der Zuverlässigkeit integrierter Schaltungen Elektronik 1980, Heft 23, S. 43–47

    Google Scholar 

  11. G. Saucier Design Methodology of High Safety Systems on Microprocessors Euromicro Symposium 1978, pp. 160–166

    Google Scholar 

  12. J. C. Geffroy, M. Diaz Unified Approach to the Study of Self-Checking Systems Digital Processes, 3, 1977, pp. 289–306

    Google Scholar 

  13. J. F. Wakerly Partially Self-Checking Circuits and their Use in Performing Logical Operations IEEE Trans on Comp C-23, No. 7, 1974, pp. 658–666

    Google Scholar 

  14. W. C. Carter, K. A. Duke, D. C. Jessep A Simple Self-Testing Decoder Checking Circuit IEEE Trans on Comp. Vol. C-20, 1971, pp. 1413–1414

    Google Scholar 

  15. Ro E. Lyons, W. Vanderkulk The Use of Triple Modular Redundancy to Improve Computer Reliability IBM Journal of Res. and Develop. Vol. 6, No. 2, 1962

    Google Scholar 

  16. D. P. Sieworek Reliability Modeling of Compensating Module Failures in Majority Voted Redundancy IEEE Trans on Comp. Vol. C-24, No. 5, 1975

    Google Scholar 

  17. W. G. Broucious, W. C. Carter, P. Ro Schneider Reliability Modeling Techniques for Self-Repairing Computer Systems Proc. of 24th Not. Conf. of ACM, 1969, pp. 295–383

    Google Scholar 

  18. F. P. Mothur On Reliability Modeling an Analysis of Ultrarelioble Fault-Tolerant Digital Systems IEEE Trans on Comp., Nov. 1971, pp. 1376–1381

    Google Scholar 

  19. C. A. Papen fuss The Availability, Reliability and Maintainability of Redundant Systems General Electric Company, Sept. 1974

    Google Scholar 

  20. H. Y. H. Chuong, S. Dos An Approach to the Design of Highly Reliable and Foil-Sofe Digital Systems Notional Computer Conference 1974, pp. 637–642

    Google Scholar 

  21. J.F. Wokerly Microcomputer Reliability Improvement Using Triple-Modular Redundancy Proc. of the IEEE, Vol. 64, No. 6, 1976, pp. 889–895

    Google Scholar 

  22. B. R. Borgerson, R. F. Freitos A Reliability Model for Graceful Degradation and Standby Sparing Systems IEEE Trans on Comp. Vol. C-24, 1975, pp. 517–525

    Google Scholar 

  23. J. Goldberg, K. W. Levitt, J. H. Wensley An Organization for o Highly Survivoble Memory IEEE Trans on Comp. Vol. C-23, 1974, pp. 693–705

    Google Scholar 

  24. F. P. Mothur, A. Avizienis Reliability Analysis for a Hybrid-Redundant Digital System: Generalized Triple Modular Redundancy with Self Repair AFIPS Conf. Proc. Vol. 36, 1970, pp. 375–383

    Google Scholar 

  25. W. C. Carter et al A Theory of Design of Fault-Tolerant Computer Using Standby Sparing 1971 Int. Symposium of Fou It-Tolerant Computing, pp. 83–86

    Google Scholar 

  26. D. P. Sieworek, E. J. Mc Clusky Switch Complexity in Systems with Hybrid Redundancy IEEE Trans on Comp Vol. C-22, No. 3, 1973, pp. 276–282

    Google Scholar 

  27. A. D. Ingle, D. P. Sieworek A Reliability Model for Various Switch Designs in Hybrid Redundancy IEEE Trans on Comp, Vol. C-25, No. 2, 1976, pp. 115–133

    Google Scholar 

  28. A. Avizienis et al The STAR (Self-Testing-and-Repair) Computer: An Investigation of the Theory and Practice on Fault-Tolerant Computer Design IEEE Trans on Comp. Vol. C-20, No. 11, 1971, pp. 1312–1321

    Google Scholar 

  29. C. V. Ramomoorthy, Y. Han Reliability Analysis of Systems with Concurrent Error Detection IEEE Trans on Comp. Vol. C-24, No. 9, 1975, pp. 868–878

    Google Scholar 

  30. R. E. Kuehn Computer Redundancy: Design, Performance, and Future IEEE Trans on Rel. Vol. R-18, No. 1, 1969, pp. 3–11

    Google Scholar 

  31. R. Hedtke Fehlertolerante Halbleiterspeicher D 17 Darmstädter Dissertation, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Hedtke, R. (1984). Redundanztechniken. In: Mikroprozessorsysteme. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93257-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93257-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12996-7

  • Online ISBN: 978-3-642-93257-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics