Skip to main content

Positron Emission Tomography — Basic Principles, Corrections and Camera Design

  • Conference paper
  • 56 Accesses

Part of the book series: Lecture Notes in Medical Informatics ((LNMED,volume 23))

Abstract

By using positron emission tomography (PET) it is possible to noninvasively study distributions of subtances labeled with positron emitting isotopes (Fig. 1). A number of positron cameras with widely varying design parameters have been developed for this purpose. Some are designed to study activity distribution in different parts of the body. Others are dedicated to the brain. The data obtained are used to reconstruct images describing the distributions. These images are sometimes further processed to evaluate physiological parameters of special interest within specified regions of the image. In this case it is often necessary to use sequences of images to determine the time dependence of the distribution. Such a quantitative use of the image data demands a high degree of reproducibility and freedom from systematical errors. This, inturn, puts high demands on the positron camera design and on algorithms and correction schemes used in the data processing. The positron camera should also be designed to have high sensitivity and good spatial resolution. The aim of this chapter is to discuss how this can be done. In order to do this, the chapter is divided into three parts. The first part introduces some basic principles, the second part deals with necessary corrections and the third discusses some actual camera designs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Derenzo SE (1979). Precision measurement of annihilation point spread distributions for medically important positron emitters. Proc 5th Int Conf Positron Annihilation (Japan): 819–823.

    Google Scholar 

  2. Laval M, Allemand R, Campagnolo R, Garderet P, Gariod R, et al (1982). Contribution of the time-of-flight information to the positron tomographic imaging. Proc Third World Conf in Nucl Med Biol Paris, Pergamon Press, ed C. Raynaud, pp 2315–2323.

    Google Scholar 

  3. Jeavons AP, Schoir B, Kull K, Townsend D, Ficy P and Donath A (1981). A large area stationary positron camera using wire chambers. (In) Med Radionuclide Imaging 1980, Vol 1, pp 49–77.

    Google Scholar 

  4. Muehllehner G, Buschin MP and Dudek JH (1976). Performance parameters of positron imaging camera. IEEE Trans Nucl Sci NS-23: 528–537.

    Google Scholar 

  5. Burnham CA,(1982). A positron tomograph employing a one dimension BGO scintillation camera (to be published).

    Google Scholar 

  6. Laval M, Aallemand R, Bouvier A, Campagnolo R, et al (1982). Design and performance of a new positron computed tomograph (PCT) using the time-o-f-flight (TOF) information. Proc Third World Conference in Nuc Med Biol Paris, Pergamon Press, ed C. Raynaud, pp 554–557.

    Google Scholar 

  7. Phelps ME, Huang SC, Hoffman EJ, Plummer D and Carson R (1982). An analysis of signal amplification using small detectors in positron emission tomography. J Comput Assist Tomogr 6 (3): 551 - 565.

    Article  PubMed  CAS  Google Scholar 

  8. Phelps ME, Hoffman EJ, Mullani N, et al (1976). Design considerations for positron emission transaxial tomograph. IEEE Trans Nucl Sci NS-23: 516–522.

    Article  Google Scholar 

  9. Bohm C, Eriksson L, Bergstrom M, et al (1978). A computer assisted ring detector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci NS-25: 624–637.

    Article  Google Scholar 

  10. Cho ZH, Hong KS, Ra JB, L„ee SY, Hilal SK and Corell JW (1981). A new sampling scheme for the ring positron camera. Dichotomic ring sampling. IEEE Trans Nucl Sci NS-28: 94–98.

    Google Scholar 

  11. Derenzo SE, Budinger TF, Huesman RH, et al (1981). Imaging properties of a positron tomograph with 280 BGO crystals. IEEE Trans Nucl Sci NS-28: 81–89.

    Article  Google Scholar 

  12. Tanaka E, Nohara N, Yamamoto M, et al (1979). Positology — the search for a suitable detector arrangement for a positron ECT with continuous rotation. IEEE Trans Nucl Sci NS-26: 2728–2731.

    Article  Google Scholar 

  13. Bergstrom M (1982). Performance evaluation and improvements of quantitation accuracy in transmission and positron emission computer assisted tomography. Thesis, University of Stockholm, Stockholm.

    Google Scholar 

  14. Hoffman EJ, Phelps ME, Huang SC, Plummer D and Kuhl DE (1982). Evaluating the performance of multiplane positron tomographs designed for brain imaging. IEEE Trans Nucl Sci NS-29: 469–473.

    Google Scholar 

  15. Hoffman EJ, Huang SC, Phelps ME and Kuhl DE (1981). Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 5: 391–400.

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto Y, Ficke DC and Ter-Pogossian MM (1982). Performance study of PETT VI, a positron computed tomograph with 288 cesium fluoride detectors. IEEE Trans Nucl Sci NS-29(1): 529–533.

    Google Scholar 

  17. Derenzo SE (1980). Method for optimizing side shielding in positron-emission tomographs and for comparing detector materials. J Nucl Med 21: 971–977.

    PubMed  CAS  Google Scholar 

  18. Tanaka E, Nohara N, Tomitani T and Endo M (1982). Analytical study of the performance of a multilayer positron computed tomography scanner. J Comput Assist Tomogr 6: 350–364.

    Article  PubMed  CAS  Google Scholar 

  19. Ueda K, Tanaka E, Takami K, Kawaguchi F, Okajami K and Tshimatsu K (1982). Evaluation of shield collimators for multilayer positron emission computed tomographs. IEEE Trans Nucl Sci NS-29(1): 563–566.

    Google Scholar 

  20. Brooks RA, Sank VS, Friauf WS, Leighton SB, Cascio HE and DiChiro G (1981). Design considerations for positron emission tomography. IEEE Trans Biomed Eng BME-28: 158–177.

    Google Scholar 

  21. Derenzo SE, Budinger TE, Cahoon JL, Greenberg WL, Huesman RH and Vuletich T (1979). The Donner 280-crystal high resolution positron tomograph. IEEE Trans Nucl Sci NS-26: 2790–2793.

    Google Scholar 

  22. Derenzo SE, Budinger TF, Cahoon JL, Huesman RLH and Jackson HG (1977). High resolution computed tomography of positron emitters. IEEE Trans Nucl Sci NS-24(1): 544–558.

    Google Scholar 

  23. Derenzo SE, Zaklad H and Budinger T (1975). Analytical study of a high resolution positron ring detector system for transaxial reconstruction tomography. J Nucl Med 16: 1166–1173.

    PubMed  CAS  Google Scholar 

  24. Kanno I, Uemura K, Miura S and Miura Y (1981). Headtome: A hybrid emission tomograph for single photon and positron emission imaging of the brain. J Comput Assist Tomogr 5: 216–226.

    Article  PubMed  CAS  Google Scholar 

  25. Phelps ME, Hoffman EJ, Huang SH and Kuhl DE (1978). ECAT: A new computerized tomographic imaging system for positron emitting radio-pharmaceuticals. J Nucl Med 19: 635–647.

    PubMed  CAS  Google Scholar 

  26. Bergstrom M, Eriksson L, Bohm C, Blomqvist G and Litton J (1983). Corrections for scattered radiation in a ring detector positron camera by integral transformation of the projections. Accepted for publication in J Comput Assist Tomogr.

    Google Scholar 

  27. King PH (1981). Noise identification and removal in positron imaging systems. IEEE Trans Nucl Sci NS-28(1): 148–150.

    Google Scholar 

  28. Endo M, Iinuma TA, Nohara N, Tomitani T and Tanaka E (1982). Soft-ware correction of scatter coincidence in Positologica: A positron CT device for head. Proc Third World Conference in Nucl Med Biol Paris, Pergamon Press, ed C. Raynaud, pp 3629–3632.

    Google Scholar 

  29. Bergstrom M, Bohm C, Eriksson L and Litton J (1980). Corrections for attenuation, scattered radiation and random coincidences in a ring detector positron emission transaxial tomograph. IEEE Trans Nucl Sci NS-27: 549–554.

    Google Scholar 

  30. Huang S-C, Hoffman EJ, Phelps ME and Kühl DE (1979). Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr 3: 804–814.

    PubMed  CAS  Google Scholar 

  31. Bergstrom M, Litton J, Eriksson L, Böhm C and Blomqvist G (1982). Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J Comput Assist Tomogr 6: 365–372.

    Article  PubMed  CAS  Google Scholar 

  32. Gullberg GT and Huesman RH (1979). Emission and transmission noise propagation in positron emission computed tomography. Presented at the Society of Nuclear Medicine 26th Annual Meeting, Atlanta, Georgia, June 26–29.

    Google Scholar 

  33. Huang S-C, Carson RE, Phelps ME, Hoffman EJ, Schelbert HR and Kuhl DE (1981). A boundary method for attenuation correction in positron computed tomography. J Nucl Med 22: 627–637.

    PubMed  CAS  Google Scholar 

  34. Bergstrom M, Eriksson L, Böhm C, Blomqvist G, Greitz T, Litton J and Widen L (1982). A procedure for calibrating and correcting data to achieve accurate quantitative values in positron emission tomography. IEEE Trans Nucl Sci NS-29(1): 555–557.

    Google Scholar 

  35. Wrenn ER, Good ML and Handle P (1951). The use of positron emit-ting isotopes for the localization of brain tumors. Science 113: 525–527.

    Article  PubMed  CAS  Google Scholar 

  36. Sweet WH (1951). Uses of nuclear disintegrations in diagnosis and treatment of brain tumors. N Eng J Med 245–875.

    Google Scholar 

  37. Brownell GL and Sweet WH (1952). Localizations of brain tumors with positron emitters. Nucleonics 11: 40.

    Google Scholar 

  38. Rankowitz S, Robertson JS, Higinbotham WA and Niell AM (1962). Positron scanner for localizing brain tumors. IRE Int Conv Ree 9: 49–56.

    Google Scholar 

  39. Kuhl DE and Edwards RO (1963). Image separation radioisotope scanning. Radiology 30: 653–661.

    Google Scholar 

  40. Brownell GL and Burnham CA (1973). MGH positron camera. (In) Tomographic Imaging in Nuclear Medicine ( Freedman GS, ed) Soc Nuclear Medicine, New York, pp 154–164.

    Google Scholar 

  41. Hounsfield GN (1973). Computerized transverse axial scanning tomo-graphy) Part I. Description of system. Brit J Radiol 46: 1016–1022.

    Article  PubMed  CAS  Google Scholar 

  42. Phelps ME, Hoffman EJ, Mullani NA and Ter-Pogossian MM (1975). Application of annihilaton coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–223.

    PubMed  CAS  Google Scholar 

  43. Ter-Pogossian MM, Ficke DC, Yamamoto M and Hood JT (1982). Design characteristics and preliminary testing of SUPER PETT I, A positron emission tomograph utilizing photon time-of-flight information (TOFPET). Proc Int Workshop on Time-of-Flight PET, Washington University (to be published).

    Google Scholar 

  44. Cho ZH, Chan JK and Eriksson L (1976). Circular ring transverse axial positron camera for 3-D reconstruction of radionuclide distribution. IEEE Trans Nucl Sci NS-23: 613–622.

    Google Scholar 

  45. Cho ZH, Hilal SK, Ra JB, Hong KS, Bigler RE, Yoshizumi T, Wolf AD and Fowler JS (1982). High resolution circular ring positron tomograph with dichotomic sampling Dichotom I (to be published).

    Google Scholar 

  46. Thompson CJ, Yamamoto YL and Meyer E (1979). Positome II: A high efficiency positron imaging sytem for dynamic brain studies. XEEE Trans Nucl Sci NS-26: 582–589.

    Google Scholar 

  47. Hoffman EJ, Phelps ME, Huang S-C, Kuhl DE, Crabtree M, Burke M, Burgiss S, Keyser R, Highfill R and Williams C (1981). A new tomograph for quantitative positron emission tomography of the brain. IEEE Trans Nucl Sci NS-28: 99–103.

    Google Scholar 

  48. Eriksson L, Bohm C, Kesselberg M, et al (1982). A four-ring positron camera for emission tomography of the brain. IEEE Trans Nucl Sci NS-29: 539–543.

    Article  Google Scholar 

  49. Kanno I, Uemura K, Miura Y and Miura S (1982). Design concepts and performances of Headtome, a multi-ring hybrid emission tomograph of the brain. Conference on Positron Emission Tomography of the Brain, Cologne, May 1982. Eds. WD Heiss and ME Phelps (Springer).

    Google Scholar 

  50. Tanaka E, Nohara N, Tomitani T, Yamamoto M, Murayame H, Tinuma T, Tateno Y, Ishimatsu K, Takemi K and Hayashi T (1982). A whole body positron tomograph, Positrologica II. Design and performance evaluation. Proc Third World Conf in Nucl Med Biol Paris, Pergamon Press, ed C. Raynaud, pp 535–541.

    Google Scholar 

  51. Anderson DF (1982). Extraction of electrons from a liquid photo- cathode into a low pressure wire chamber. Phys Letter 118B: 230–232.

    Google Scholar 

  52. Kuhl DE, Edwards RQ, Ricci AR, Yacob RJ, et al (1976). The Mark IV system for radionuclide computed tomography of the brain. Radiology 121: 405–413.

    PubMed  CAS  Google Scholar 

  53. Cohen G and DiBianca FA (1979). The use of contrast-detail-dose evaluation of image quality in a computed tomographic scanner. J Comput Assist Tomogr 3: 189–195.

    Article  PubMed  CAS  Google Scholar 

  54. Brooks RA, Sank VM, DiChiro G, Friauf WS and Leighton SB (1980). Design of a high resolution positron emission tomograph: The Neuro-Pet. J Comput Assist Tomogr 4: 5–13.

    Article  PubMed  CAS  Google Scholar 

  55. The Cyclotron Corporation. TCC 4600 Specifications.

    Google Scholar 

  56. Ter-Pogossian MM, Ficke DC, Hood JT, Yamamoto M and Mullani NA (1982). PETT VI: A positron emission tomograph utilizing cesium fluoride scintillation detectors. J Comput Assist Tomogr 6 (1): 125–133.

    Article  PubMed  CAS  Google Scholar 

  57. Cho ZH, Hong KS, Ra JB, Hilal SK and Correll J (1981). High resolution spherical positron emission tomograph (S-PET) and its design analysis. Presented at 1981 IEEE Nucl Sci Symposium.

    Google Scholar 

  58. Ricci AR, Hoffman EJ, Phelps ME, Huang S-C, Plummer D and Carson R (1982). Investigations of a technique for providing a pseudocontinuous detector ring for positron tomography. IEEE Trans Nucl Sci NS-29: 452–456.

    Google Scholar 

  59. Budinger TF, Derenzo SE, Huesman RH and Cahoon JL (1982). Positron emission tomography: Instrumentation perspectives (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bohm, C., Eriksson, L., Bergstrőm, M. (1984). Positron Emission Tomography — Basic Principles, Corrections and Camera Design. In: Nalcioglu, O., Cho, ZH. (eds) Selected Topics in Image Science. Lecture Notes in Medical Informatics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93253-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93253-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-93255-7

  • Online ISBN: 978-3-642-93253-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics