Skip to main content

Messungen an Vorformen und Lichtwellenleitern

  • Chapter
Einführung in die Optische Nachrichtentechnik
  • 73 Accesses

Zusammenfassung

Da die Fertigungsmethoden von LWL verschiedene Unsicherheitsfaktoren aufweisen, ist es unbedingt erforderlich, daß deren Eigenschaften sowohl an der Vorform als auch an dem LWL selbst mit möglichst hoher Präzision gemessen werden. Dazu wurde eine Reihe neuer Meßmethoden entwickelt [3.1]. Zu den wichtigsten zu messenden Größen zählen:

  • Dämpfung

  • Übertragungsbandbreite

  • Brechzahlprofil

  • Numerische Apertur

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 3

  1. Bondiek, R., et al.: Meßgeräte für die optische Nachrichtentechnik; Wiss. Ber. AEG-Telefunken 53 (1980) 1 /2, 42–48

    ADS  Google Scholar 

  2. Kaiser, M.: Messung der Übertragungseigenschaften von Multimode- Lichtwellenleitern, ntz 34 (1981) 7, 418–422

    Google Scholar 

  3. Barnoski, M.K.; Personick, S.D.: Measurements in Fiber Optics, Proc. IEEE 68 (1978) 4, 429–441

    Google Scholar 

  4. Cherin, A.H.; Gardner, W.B.: Measurement Standards for Multimode Telecommunication Fibers; SPIE 224 (1980): Fiber Optics for Communications and Control, 144–148

    Google Scholar 

  5. Franzen, D.L.; Day, G.W.; Gallawa, R.L.Standardizing Test Conditions for Characterizing Fibers; Laser Focus, August 1981, 103–105

    Google Scholar 

  6. Day, G.W.; Chamberlain, G.E.: Attenuation Measurements on Optical Fiber Waveguides: An Interlaboratory Comparison among Manufacturers; NBS- Report NBSIR 79-1608, Mai 1979

    Google Scholar 

  7. Love, R.E.: Waveguide Fiber Standards; Int. Fiber Opt. and Commun. Handbook and Buyers’ Guide 1980–1981, 62–67

    Google Scholar 

  8. Bark, P.R.; Lawrence, D.O.: Emerging Standards in Fiber Optic Telecommunications cable; SPIE 224 (1980): Fiber Optics for Communications and Control, 149–158

    Google Scholar 

  9. Makuch, J.A.: Review and Update of Fiber Interconnect Standardization; SPIE 224 (1980): Fiber Optics for Communications and Control, 159–165

    Google Scholar 

  10. White, K.I.: A calorimetric method for the measurement of low optical absorption losses in communication fibers; Opt. and Quant. Electron. 8 (1976), 73–76

    Article  Google Scholar 

  11. Heitmann, W.: Intrinsic attenuation in pure and doped silica for fibre optical waveguides; ntz 30 (1977) 6, 503–506

    Google Scholar 

  12. Kartzow, M.: Interferometrische Bestimmung von Laufzeiteffekten in Lichtleitfasern für die Nachrichtentechnik; Dipl.-Arb. 1978, TU Berlin

    Google Scholar 

  13. Strobel, D.: Untersuchungen der Dispersion und anderer charakteristischer Größen von Glasfasern zur Nachrichtenübertragung in einem Mach-Zehnder-Interferometer; Dipl.-Arb. 1980, TU Berlin

    Google Scholar 

  14. Marcuse, D.: Refractive Index Determination by the Focusing Method; Appl. Opt. 18 (1979) 1, 9–13

    Article  ADS  Google Scholar 

  15. Presby, H.M.; Marcuse, D.: Optical Fiber Preform Diagnostics; Appl. Opt. 18 (1979) 1, 23–30

    Article  ADS  Google Scholar 

  16. Presby, H.M.; Marcuse, D.: Preform Index Profiling (PIP); Appl. Opt. 18 (1979) 5, 671–677

    Article  ADS  Google Scholar 

  17. Okoshi, T.; Nishimura, M.; Kosuge, M.: Nondestructive Measurement of Axially Nonsymmetric Refractive Index Distribution of Optical Fibre Preforms; Electron. Lett. 16 (1980) 19, 722–724

    Article  Google Scholar 

  18. Okoshi, T.; Nishimura, M.: Automated Measurement of Refractive Index Profile of VAI Preforms by Fringe Counting Method; J. of Opt. Commun. J (1980) 1, 18–21

    Article  Google Scholar 

  19. Iga, K.; Kokubun, Y.: Formulars for calculating the refractive index profile of optical fibers from their transverse interference pattern; Appl. Opt. 17 (1978) 12, 1972–1974

    Article  Google Scholar 

  20. Okoshi, T.; Hotate, K.: Refractive-Index Profile of an Optical Fiber: Its Measurement by the Scattering-Pattern Method; Appl. Opt. 15 (1976) 11, 2756–2764

    Article  Google Scholar 

  21. Presby, H.M.; Marcuse, D. Refractive Index and Diameter Determination of Step-Index Optical Fibers and Preforms; Appl. Opt. 13 (1974) 12, 2882–2885

    Article  Google Scholar 

  22. Marcuse, D.; Presby, H.M.: Light Scattering from Optical Fibers with Arbitrary Refractive Index Distributions; J. Opt. Soc. Am. 65 (1975) 4, 367–375

    Article  ADS  Google Scholar 

  23. Saekeang, C.; Chu, P.L.: Non-Destructive Determinations of Refrative Index Profile of an Optical Fiber: Backward Light Scattering Method; Appl. Opt. 18 (1979) 7, 1110–1116

    Article  ADS  Google Scholar 

  24. Chu, P.L.: Non-Destructive Measurement of Index Profile of an Optical-Fiber Preform; Electron. Lett. 13 (1977) 24, 336–738

    Google Scholar 

  25. Barrell, K.F.; Pask, C.: Nondestructive Index Profile Measurement of Non-Circular Optical Fiber Preforms; Opt. Commun. 27 (1978) 2, 230–234

    Article  ADS  Google Scholar 

  26. Chu, P.L.: Nondestructive Refractive-Index Profile Measurement of Elliptical Optical Fiber or Preform; Electron. Lett. 15 (1979) 12, 357–358

    Article  Google Scholar 

  27. Watkins, L.S.: Laser Beam Refraction Transversly through a Graded-Index Preform to Determine Refractive Index Ratio and Gradient Profile; Appl. Opt. 18 (1979) 13, 2214–2222

    Article  Google Scholar 

  28. Boggs, L.M.; Presby, H.M.; Marcuse, D.; Rapid Automatic Index Profiling of Whole-Fiber Samples; Bell Syst. Techn. J. 58 (1979) 4, 867–902

    Google Scholar 

  29. Presby, H.M.; Kaminow, I.P.: Binary Silica Optical Fibers: Refractive Index and Profile Dispersion Measurements; Appl. Opt. 15 (1976) 12, 3029–3036

    Article  Google Scholar 

  30. Presby, H.M.; Astle, H.W.: Optical Fiber Index Profiling by Video Analysis of Interference Fringes; Rev. Sci. Instrum. 49 (1978), 339

    Article  ADS  Google Scholar 

  31. Francois, P.L. Sasaki, I.; Adams, M.J.: Three Dimensional Fiber Preform Profiling; Electron. Lett. 17 (1981) 23, 876–878

    Article  Google Scholar 

  32. Marcuse, D.; Presby, H.M.: Focusing Method for Nondestructive Measurement of Optical Fiber Index Profiles; Appl. Opt. 18 (1979) 1, 14–22

    Article  ADS  Google Scholar 

  33. Presby, H.M.; Marcuse, D.; Astle, H.W.: Automated Retractive-Index Profiling of Optical Fibers; Appl. Opt. 17 (1978) 14, 2209–2214

    Article  Google Scholar 

  34. Marcuse, D.; Presby, H.M.: Index Profile Measurements of Fibers and Their Evaluation; Proc. IEEE 68 (1980) 6, 666–688

    Google Scholar 

  35. Presby, H.M.; Marcuse, D.: The Index-Profile Characterization of Fiber Preforms and Drawn Fibers; Proc. IEEE 68 (1980) 10, 1198–1203

    Google Scholar 

  36. Sladen, F.M.E.; Payne, D.N.; Adams, M.J.: Determination of Optical Fiber Refractive Index Profiles by Near Field Scanning Techniques; Appl. Phys. Lett. 28 (1976) 5, 255–258

    Article  ADS  Google Scholar 

  37. Kim, E.M.; Franzen, D.L.: Measurement of Far-Field and Near-Field Radiation Patterns for Optical Fibers; NBS Techn. Note (1981) Febr., No. 1032

    Google Scholar 

  38. Hazan, J.P.: Intensity Profile Distortion Due to Resolution Limitation in Fiber Index Profile Determination by Near Field; Electron. Lett. 14 (1978) 5, 158–160

    Article  ADS  Google Scholar 

  39. Arnaud, J.A.; Derosier, R.M.: Novel Technique for Measuring the Index Profile of Optical Fibers; Bell Syst. Techn. J. 55 (1976) 12, 1489–1508

    Google Scholar 

  40. Stewart, W.J.: A New Technique for Measuring the Refractive Index Profiles of Graded Index Fibers; Int. Conf. on Integrated Optics and Optical Fiber Communication IOOC’77, Tokyo, Techn. Dig., Paper C2-2

    Google Scholar 

  41. Young, M.: Optical Fiber Index Profiles by the Refracted-Ray Method (Refracted Near-Field Scanning); Appl. Opt. 20 (1981) 19, 3415–3422

    Article  Google Scholar 

  42. Young, M.: Refracted-Ray Scanning (Refracted Near-Field Scanning) for Measuring Index Profiles of Optical Fibers; NBS Techn. Note (1981) May, No. 1038

    Google Scholar 

  43. Geckeler, S.: Das Phasenraumdiagramm, ein vielseitiges Hilfsmittel zur Beschreibung der Lichtausbr6itung in Lichtwellenleitern; Siemens Forsch.- u. Entw.-Ber. 10 (1981) 3, 162–171

    Google Scholar 

  44. Stone, J.; Derosier, R.M.: Elimination of Errors Due to Sample Polishing in Refractive Index Profile Measurements by Interferometry, Rev. Sci. Instrum. 47 (1976), 885

    Article  ADS  Google Scholar 

  45. Ikeda, M.; Tatedo, M.; Yoshikiyo, H.: Refractive Index Profile of Graded Index Fiber: Measure-ment by Reflection Method; Appl. Opt. 14 (1975) 4, 814–815

    Article  ADS  Google Scholar 

  46. Calzavara, M. Costa, B.; Sordo, B.: Stability and Noise Improvement in Reflectometric Index Measurement; J. of Opt. Commun. 2 (1981) 2, 65–68

    Article  Google Scholar 

  47. Presby, H.M.: Profile Characterization of Optical Fibers - A Comparative Study; Bell Syst. Techn. J. 60 (1981) 7, 1335–1362

    Google Scholar 

  48. Imai, M.: Average intensity distribution of far-field radiation patterns in a multimode optical fiber; Trans. Inst. Electron. Commun. Eng. Jap. E, E63 (1980) 1, 16–23

    Google Scholar 

  49. Kersten, R.Th. Le Hiep, T.: Wavelength Dependence of the Numerical Aperture of Optical Fibers; Opt. Commun. 41 (1982) 2, 99–101

    Article  ADS  Google Scholar 

  50. Holmes, G.T.; Hawk, R.M.: Limited Phase Space Attenuation Measurements of Low Loss Optical Waveguides; private Mitteilung

    Google Scholar 

  51. Kaiser, P.: Numerical-Aperture Dependent Spectral-Loss Measurements of Optical Fibers; Conf. on Integrated Optics and Optical Fiber Communication IOOC’77, Tokyo; Techn. Dig., Paper B6-2

    Google Scholar 

  52. Kaiser, P.: NA-Dependent Spectral Loss Measurements of Optical Fibers; Trans. IECE Jap. E-61 (1978) 3, 225–229

    Google Scholar 

  53. Cohen, L.G.; Kaiser, P.; Lin, C.: Experimental Techniques for Evaluation of Fiber Transmission Loss and Dispersion; Proc. IEEE 68 (1980) 10, 1203–1209

    Google Scholar 

  54. Stone, F.T.; Krawarik, P.H.: Mode Elimination in Fiber Loss Measurements; Appl. Opt. 18 (1979) 6, 756–758

    Article  ADS  Google Scholar 

  55. Cohen, L.G., et al.: Fiber Characterization in: Opt. Fiber Telecommunication; Miller, St. E.; Chynoweth, A.G., eds., Academic Press 1980, 343–399

    Google Scholar 

  56. Heitmann, W. et al.: Broadband Spectral Attenuation Measurements on Optical Fibers: An Interlaboratory Comparison by Members of COST 208; Opt. Quant. Electron. 13 (1981) 1, 47–54

    Article  Google Scholar 

  57. Cherin, A.H.; Gardner, W.B.: Fiber Measurements Standards; Laser Focus August 1980, 60–65

    Google Scholar 

  58. Kaiser, P.: Loss Measurements of Graded Index Fibers: Accuracy versus Convenience; Symp. on Optical Fiber Measurements; Boulder 1980, Techn. Dig.: NBS spec, publication 597, 11–14

    Google Scholar 

  59. Reitz, P.R.: Measuring Optical Waveguide Attenuation: The LPS Method; Opt. Spectra, August 1980, 48–52

    Google Scholar 

  60. Tateda, M., et al.: Optical loss measurements in graded index fibers using a dummy fiber; Appl. Opt. 18 (1979) 19, 3272–3275

    Article  Google Scholar 

  61. Kitayama, K. Ohashi, M.; Seikai, S.: Mode conversion at splices in multimode graded-index fibers; IEEE J. Quant. Electron. QE-16 (1980) 9, 971–978

    Article  ADS  Google Scholar 

  62. Kashima, N.: Splice Loss and Mode Conversion in a Multimode Fiber; Appl. Opt. 19 (1980) 15, 2597–2601

    Article  Google Scholar 

  63. Miller, C.M.: Mode Coupling versus Wavelength Measurements in Graded Index Multimode Fibers; 7th European Conf. on Opt. Com-mun. ECOC’81, Kopenhagen; Techn. Dig., Paper 5. 4

    Google Scholar 

  64. Ikeda, M.; Murakami, Y. Kitayama, K.: Mode scrambler of optical fibers; Appl. Opt. 16 (1977) 4, 1045–1049

    ADS  Google Scholar 

  65. Ikeda, M., et al.: Multimode optical fibres: Steady state mode exciter; Appl. Opt. 15 (1976) 9, 2116–2120

    Article  ADS  Google Scholar 

  66. Le Hiep, T.; Kersten, R. Th.: A combined mode-filter/mixer to determine spectral attenuation of graded index fibers; Opt. Commun. 40 (1981) 2, 111–116

    ADS  Google Scholar 

  67. Tokuda, M., et al.: Measurement of Baseband Frequency Response of Multimode Fiber by Using a New Type of Mode Scrambler; Electron. Lett. 13 (1977) 5, 146–147

    Article  Google Scholar 

  68. Heitmann, W.: Messung der Kurven 1 und 3 im FTZ, FI der Deutschen Bundespost, Darmstadt

    Google Scholar 

  69. Fujii, Y.; Koyama, M.; Touge, T.: New optical power meter for optical fiber transmission system applications; IEEE Trans. Instrum. Meas. 29 (1980) 1, 71–73

    Article  Google Scholar 

  70. Schlaak, H.F.; Gwiazdowski, M.: Optical Fiber Length Measurement by Pulsereflectometry; Frequenz 35 (1981) 9, 243–246

    Article  Google Scholar 

  71. Danielson, B.L.: Backscatter Measurements on Optical Fibers; NBS Techn. Note (1981) Febr., No. 1034

    Google Scholar 

  72. Personnick, S.D.: Photon-Probe - An Optical-Fiber Time-Domain Reflectometer; Bell Syst. Techn. J. 56 (1977) 3, 355–366

    Google Scholar 

  73. Barnoski, M.K. Rourke, M.D.; Jensen, S.M.: 2nd European Conf. on Opt. Commun. ECOC’76, Paris; Techn. Dig.

    Google Scholar 

  74. Schicketanz, D.: Theorie der Rückstreumessung bei Glasfasern; Siemens Forsch.- u. Entw.-Ber. 9 (1980) 4, 242–248

    ADS  Google Scholar 

  75. Schicketanz, D.: Anwendung des Rückstreumeßplatzes in der Lichtwellenleitertechnik; Siemens Forsch.- u. Entw.-Ber. 10 (1981) 1, 53–59

    Google Scholar 

  76. Philen, D.L.; Day, G.W.; Franzen, D.L.: Optical Time Domain Reflectometry on Single Mode Fibers Using a Q-Switched ND: YAG-Laser; Symp. on Optical Fiber Measurements; Boulder 1980, Techn. Dig.: NBS spec, publication 597, 97–100

    Google Scholar 

  77. Piccari, L.: Optical fibre attenuation measurement by the backscattering method: Effects of noise; Opt. Quant. Electron. 12 (1980) 5, 413–418

    Article  ADS  Google Scholar 

  78. Schlang, R.: Dämpfungsmessung an optischen Fasern; ntz 33 (1980) 1, 30–31

    Google Scholar 

  79. Conduit, A.J. et al.: An optimized technique for backscatter attenuation measurements in optical fibres; Opt. Quant. Electron. 12 (1980) 2, 169–178

    Article  ADS  Google Scholar 

  80. Di Vita, P.; Rossi, U.: The backscattering technique: Its fields of applicability in fibre diagnostics and attenuation measurements; Opt. Quant. Electron. 12 (1980) 1, 17–22

    Article  ADS  Google Scholar 

  81. Costa, B., et al.: Attenuation Measurements Performed by Backscattering Technique; Electron. Lett. 16 (1980) 10, 352–353

    Article  Google Scholar 

  82. Neumann, E.G.: Analysis of the backscattering method for testing optical fiber cables; AEU 34 (1980) 4, 157–160

    Google Scholar 

  83. Bronstein, I.; Semendjajew, K.: Taschenbuch der Mathematik; B.G.Teubner Verlagsges. Leipzig 1968, 9.Aufl., 280

    Google Scholar 

  84. Eriksrud, M.; Mickelson, A.R.: Experimental Investigation of Variation of Backscattered Power Level with Numerical Aperture in Multimode Optical Fibers; Electron. Lett. 18 (1982) 3, 130–132

    Article  Google Scholar 

  85. Shibata, N. et al.: Measurements of Waveguide Structure Fluctuation in a Multimode Optical Fiber by Backscattering Technique; IEEE J. Quant. Electron. QE-17 (1981) 1, 39–44

    Article  ADS  Google Scholar 

  86. Andrews, J.R.: Inexpensive Laser Diode Pulse Generator for Optical Waveguides Studies; Rev. Sci. Instrum. 45 (1974), 22–24

    Article  ADS  Google Scholar 

  87. Di Vita, P.; Rossi, U.: Backscattering Measurements in Optical Fibers: Separation of Power Decay from Imperfection Contribution; Electron. Lett. 15 (1979) 15, 467–469

    Article  Google Scholar 

  88. Horimatsu, T.; Sasaki, M.; Aoyama, K.: Stabilization of Diode Laser Output by Beveled-End Fiber Coupling; Appl. Opt. 19 (1980) 12, 1984–1986

    Article  Google Scholar 

  89. Kawasaki, B.S.; Hill, K.O.: Low-loss access coupler for multimode optical fiber distribution networks; Appl. Opt. 16 (1977) 7, 1794–1796

    Article  ADS  Google Scholar 

  90. Lightstone, A.: Couplers for fibre optic communications; Electron, and Instrum. 11 (1980) 2, 75, 77, 87

    Google Scholar 

  91. Aoyama, K.; Nakagawa, K.; Itoh, T.: Optical Time Domain Reflectrometry in a Single Mode Fiber; IEEE J. Quant. Electron. QE-17 (1981) 6, 862–868

    Article  ADS  Google Scholar 

  92. Rogers, A.J.: Polarisation Optical Time Domain Reflectrometry; Electron. Lett. 16 (1980) 13, 489–490

    Article  Google Scholar 

  93. Rogers, A.J.: The Latest in Fiber Optic Directional Couplers; Canadian Electron. Eng. March 1979, 39–40

    Google Scholar 

  94. Rogers, A.J.: Signal Averagers; Firmenschrift der Firma Princeton Applied Research, 1976

    Google Scholar 

  95. Schlaak, H.F., et al.: Ein digitaler optischer Rückstreumeßplatz: D0TDR; NTG- Fachtagung: Meßtechnik in der optischen Nachrichtentechnik, Berlin, 1980

    Google Scholar 

  96. Kawasaki, B.S. Hill, K.O.; Johnson, D.C.: Optical Time Domain Reflectometer for Single-Mode Fiber at Selectable Wavelengths; Appl. Phys. Lett. 38 (1981) 10, 740–742

    Article  Google Scholar 

  97. Nakazawa, M., et al.: Marked Extension of Diagnosis Length in Optical Time Domain Reflectometry using 1.32 µm YAG-Laser; Electron. Lett. 17 (1981) 21, 783–784

    Article  Google Scholar 

  98. Healey, P.: Multichannel Photon-Counting Backscatter Measurements on Monomode Fibers; Electron. Lett. 17 (1981) 20, 751–752

    Article  Google Scholar 

  99. Sladen, F.M.E. Payne, D.N.; Adams, M.J.: Definitive profile-dispersion data for germania-doped silica fibres over an extended wavelength range; Electron. Lett. 15 (1979) 15, 469–470

    Article  Google Scholar 

  100. Sladen, F.M.E. Payne, D. N.; Adams, M.J.: Measurement of profile dispersion in optical fibres: A direct technique; Electron. Lett. 13 (1977) 7, 212–213

    Article  Google Scholar 

  101. Jinguji, K.; Okamoto, K.: Minimization of Modal Dispersion in Graded-Index Fibres over a Wide Wavelength Range; J. of Opt. Commun. 1 (1980) 1, 2–4

    Article  Google Scholar 

  102. Geckeler, S.: Compensation of profile dispersion in graded-index optical fibres; Electron. Lett. 15 (1979) 21, 682–683

    Article  Google Scholar 

  103. Cohen, L.G.; Mamme1, W.L. Tailoring the Shapes of Dispersion Spectra to Control Bandwidths in Single-Mode Fibers; European Conf. on Opt. Commun. ECOC’81, Kopenhagen, Vortrag 3. 3

    Google Scholar 

  104. Franzen, D.L.; Day, G.W.: Measurement of optical fiber bandwidth in the time do-main; NBS Techn. Note (1980) Febr., No. 1019, 1–65

    Google Scholar 

  105. Day, G.W.: Measurement of Optical Fiber Bandwidth in the Frequency Domain; NBS Techn. Note Sept. 1981, No. 1046

    Google Scholar 

  106. Nagano, K.; Kawakami, S.: Measurements of mode conversion coefficients in graded-index fibers; Appl. Opt. 19 (1980) 14, 2426–2434

    Article  Google Scholar 

  107. Geckeler, S.: Pulse broadening in optical fibers with mode mixing; Appl. Opt. 18 (1979) 13, 2192–2198

    Article  Google Scholar 

  108. Schicketanz, D.: Messung der komplexen Übertragungsfunktion von Glasfasern; Siemens Forsch.- u. Entw.-Ber. 6 (1977) 2, 92–98

    ADS  Google Scholar 

  109. Cohen, L.G.: Shuttle Pulse Measurements of Pulse Spreading in an Optical Fiber; Appl. Opt. 14 (1975) 6, 1351–1356

    Article  ADS  Google Scholar 

  110. Tonifuji, T.; Ikeda, M.: Simple Method for Measuring Material Dispersion in Optical Fibers; Electron. Lett. 14 (1978) 12, 367–369

    Article  Google Scholar 

  111. Lin, C., et al.: Measuring High Bandwidth Fibers in the 1.3 urn Region with Picosecond InGaAsP Injection Lasers and Ultrafast InGaAs Detectors; Electron. Lett. 17 (1981) 13, 438–439

    Article  Google Scholar 

  112. Cohen, L.G.; Lin, C.: Pulse Delay Measurements in the Zero Material Dispersion Wavelength Region for Optical Fibers; Appl. Opt. 16 (1977) 12, 3136–3139

    Article  Google Scholar 

  113. Stolen, R.H.; Ippen, E.P.; Tynes, A.R.: Raman oscillation in glass optical waveguide; Appl. Phys. Lett. 20 (1972) 2, 62–64

    Article  ADS  Google Scholar 

  114. Lin, C.; Nguyen, V.T.; French, W.G.: Wideband Near-I.R. Continuum (0.7–2.1 µm) Generated in Low Loss Optical Fibers; Electron. Lett. 14 (1978) 25, 822–823

    Article  Google Scholar 

  115. Lin, C., et al.: Pulse delay measurements in the zero-material-dispersion region for germanium- and phosphorus-doped silica fibres; Electron. Lett. 14 (1978) 6, 170–172

    Article  Google Scholar 

  116. Hornung, S.; Reeve, M.H.: Single-Mode Optical Fiber Microbending Loss in a Loose Tube Coating; Eletron. Lett. 17 (1981) 21, 774–775

    Article  Google Scholar 

  117. Ainslie, B.J., et al.: Interplay of Design Parameters and Fabrication Conditions on. the Performance of Monomode Fibers Made by MCVD; IEEE J. Quant. Electron. QE-17 (1981) 6, 854–857

    Article  ADS  Google Scholar 

  118. Osanai, H., et al.: Effect of Dopants on Transmission Loss of Low-OH Content Optical Fibers; Electron. Lett. 12 (1976) 21, 549–550

    Article  Google Scholar 

  119. Gardner, W.B., et al.: The Effect of Optical Fiber Core and Cladding Diameter on the Loss Added by Packaging and Thermal Cycling; Bell- Syst. Techn. J. 60 (1981) 6, 859–864

    Google Scholar 

  120. Tomaru, S., et al.: VAD Single Mode Fiber with 0.2 dB/km Loss; Electron. Lett. 17 (1981) 2, 92–93

    Article  Google Scholar 

  121. Miya, T., et al.: Ultimate low-loss single-mode fibre at 1.55 µm; Electron Lett. 15 (1979) 4, 106–108

    Article  ADS  Google Scholar 

  122. Huber, H.P., et al.: Verkabelungsversuche mit Monomodefasern; ntz 33 (1980) 12, 782–786

    Google Scholar 

  123. Ishihara, K., et al.: Determination of optimum structure in coated optical fiber and unit; Trans. Inst. Electron. Commun. Eng. Jap. E, E63 (1980) 1, 66–68

    ADS  Google Scholar 

  124. Horima, H., et al.: Characteristics of Jelly-Filled Optical Cables; J. of Opt. Commun. 1 (1980) 2, 58–63

    Article  Google Scholar 

  125. Gottwald, K.; Giehmann, L.: Ein störungsunempfindliches Verfahren zur Messung von Einzugskräften am Lichtleitkabelkopf; NTG Fachber. 75, VDE-Verlag 1980

    Google Scholar 

  126. Katsuyama, Y. et al.: Study on Mechanical and Transmission Characteristics of Optical Fiber Cable during Installation; J. of Opt. Commun., 3 (1982) 1, 2–7

    Article  Google Scholar 

  127. Kimura, T., et al.: Long-Term Mechanical Reliability of Optical Fibers; Electron. Commun. Lab. Techn. J. 29 (1980) 10, 1771–1782

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Kersten, R.T. (1983). Messungen an Vorformen und Lichtwellenleitern. In: Einführung in die Optische Nachrichtentechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93234-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93234-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11923-4

  • Online ISBN: 978-3-642-93234-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics