Advertisement

Positron Emission Tomography

  • Michel M. Ter-Pogossian
Conference paper
Part of the Lecture Notes in Medical Informatics book series (LNMED, volume 17)

Abstract

Positron emission tomography (PET), is a tool of major promise in biomedical research and clinical applications, which yields images representing the distribution of a systemically administered positron-emitting radionuclide in transverse tomographic sections of the body of human subjects or experimental animals. The usefulness of PET stems from the fact that some elements of fundamental importance in the investigation biological processes possess radionuclides which decay by the emission of positrons. Most of these radionuclides (11C, 13N, 15O, 18F) decay with half-lives of minutes and must be prepared in the vicinity of the site of utilization. Many molecules of physiological importance have been labeled with these radionuclides. Through the use of these molecules, PET permits the in vivo regional assessment of a number of biochemical processes essential to life. Most PET devices utilize scintillation detectors fitted either with sodium iodide, bismuth germanate or cesium fluoride crystals. A promising improvement in PET consists in the incorporation of photon time-of-flight information in the image reconstruction process. PET images are reconstructed from a large number of measurements and the storage and utilization of this information requires large computer memory capabilities and fast processing systems. State of the art PET devices yield images with the spatial resolution better than 1 cm with a contrast resolution of better than 10% in a period of time of less than 1 minute.

Keywords

Positron Emission Tomography Positron Emission Tomography Image Positron Emission Tomograph Sodium Iodide Annihilation Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Ter-Pogossian, Basic principles of computed axial tomography, Sem Nucl Med 7: 109–127, 1977.CrossRefGoogle Scholar
  2. 2.
    R.A. Brooks, G. Di Chiro, Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging: Review article, Phys Med Biol 21: 689–732, 1976.CrossRefGoogle Scholar
  3. 3.
    M.M. Ter-Pogossian, M.E. Phelps, E.J. Hoffman, et al: A positron emission transaxial tomograph for nuclear imaging (PETT), Radiology 114: 89–98, 1975.Google Scholar
  4. 4.
    R. Allemand, C. Gresset, J. Vacher, Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera, J Nucl Med 21: 153–155, 1980.Google Scholar
  5. 5.
    J.S. Robertson, A.B. Marr, M. Rosenblum, U. Radeka, Y.L. Yamamoto, “32 crystal positron transverse section detector,” Tomographie Imagina in Nuclear Medicine edited by G.S. Freedman, Society of Nuclear Medicine, New York, 1973, pp. 142–153.Google Scholar
  6. 6.
    M.M. Ter-Pogossian, N.A. Mullani, J. Hood, C.S. Higgins, C.M. Currie, A multi-slice positron emission computed tomograph (PETT IV) yielding transverse and longitudinal images, Radiology 128: 477–484, 1978.Google Scholar
  7. 7.
    C.A. Burnham, G.L. Brownell, A multi-crystal positron camera, IEEE Trans 19: 201–205, 1972.Google Scholar
  8. 8.
    S.E. Derenzo, T.F. Budinger, J.L. Calhoon, W.L. Greenberg, R.H. Hesman, T. Vuletich, The Donner 280-crystal high resolution positron tomograph, IEEE Trans Nucl Sc 26 (2): 2790–2993, 1979.CrossRefGoogle Scholar
  9. 9.
    C. Bohm, L. Eriksson, M. Bergstrom, J. Litton, R. Sundman, M. Singh, A computer assisted ring detector camera system for reconstruction tomography of the brain, IEEE Trans Nucl Sc 25: 624–637, 1978.CrossRefGoogle Scholar
  10. 10.
    M.M. Ter-Pogossian, N.A. Mullani, J. Hood, C.S. Higgins, D.C. Ficke, Design considerations for a positron emission transverse tomograph (PETT V) for imaging of the brain, J Comput Assist Tomogr 2: 539, 1978.CrossRefGoogle Scholar
  11. 11.
    R.A. Brooks, V.J. Sank, G. Di Chiro, W.S. Friauf, S.B. Leighton, Design of a high resolution positron emission tomograph: The Neuro-PET, J Comput Assist Tomogr 4 (1): 5–13, 1980.CrossRefGoogle Scholar
  12. 12.
    E.J. Hoffman, M.E. Phelps, An analysis of some of the physical aspects of positron transaxial tomography, Comput Biol Med 6: 345–360, 1976.CrossRefGoogle Scholar
  13. 13.
    S.E. Derenzo, T.F. Budinger, Resolution limit for positron-imaging devices, J Nucl Med 18: 491, 1977.Google Scholar
  14. 14.
    M.M. Ter-Pogossian, M.S. Klein, J. Markham, R. Roberts, B.E. Sobel, Regional assessment of myocaridal metabolic integrity in vivo by positron-emission tomography with 11C-labeled palmitate, Circ 61: 242–255, 1980.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Michel M. Ter-Pogossian
    • 1
  1. 1.Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations