Skip to main content

CT Techniques in Medical Imaging

  • Conference paper

Part of the book series: Lecture Notes in Medical Informatics ((LNMED,volume 15))

Abstract

Computerized tomography (CT) employs a novel type of image buildup technique based on measured data obtained with a classic information carrier in the field of medicine, namely X-radiation. The rapid and impressive success attained by CT since its introduction in the first half of the 1970s has led to a number of attempts to combine its image reconstruction algorithm with other information carriers, most of which have also been tried and tested for medical applications, for example, the gamma radiation of nuclear-diagnostic indicators. To differentiate this from the “real” CT technique, namely roentgen (X-ray) CT, or RCT, we then speak of emission CT, or ECT. Another information carrier today used in developing a new type of cross sectional imaging in medicine is the nuclear magnetic resonance (NMR) signal, the potential of which for diagnostic imaging was unknown before the introduction of CT. It is the aim of this article to provide an overview of such further cross-sectional imaging techniques with CT image reconstruction, the principle and the particular physical-technical problems receiving special attention. Furthermore, the attempt is also made - if only in outline - to assess the relevance and prospects of these techniques. Such an overview would also appear useful as background information for a discussion of the developmental tendencies in X-ray CT, since the knowledge and results gained with the other techniques might also be employed to advance the “real” or original (X-ray) CT technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeiler, M.s Developments in Computerized Tomography Including Non-X-ray Techniques, In: Radiology Today ( M.W. Donner and F. H.W. Heuck, eds.) A. Springer, Berlin - Heidelberg, 1981.

    Google Scholar 

  2. 2722–2727. Cormack, A.M.: Representation of a function by its line integrals, with some radiological applications. II. J. of appl. Phys. 35 (1964) 2908–2913.

    Article  Google Scholar 

  3. Ramachandran, G.N., Lakshminarayanan, A.V.: Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolution instead of Fourier-transform. Proc. of the nat. Acad. Sci. USA 68 (1971) 2236–2240.

    Article  MathSciNet  Google Scholar 

  4. Parts 1, 2, 3. Brit. J. of Radiol. 46 (1973) 1016–1051.

    Google Scholar 

  5. Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE. Trans, on nucl. Sei. NS-21 (1974) 21–43.

    Google Scholar 

  6. Pfeiler, M., Schwierz, G., Linke, G.: Modellvorstellungen zur Bildaufzeichnung bei der Computertomographie (Computerized axial tomography). Electromedica 44 (1976) 19–25.

    Google Scholar 

  7. Linke, G.: Technische Grundlagen der Computertomographie. Röntgenprax. 30 (1977) 159–180.

    Google Scholar 

  8. Jass, W., Linke, G., Schwierz, G.: SOMATOM - Ein schneller Ganzkörper-Computertomograph mit unmittelbarer Bildwiedergabe. Elec-tromedica 45 (1977) 118–122.

    Google Scholar 

  9. Herman, G. T., Lakshminarayanan, A. V., Naparstek, A.s Reconstruction using divergent - ray shadowgraphs. In: [20] 105–117.

    Google Scholar 

  10. SCHWIERZ, G., HÄRER, W., RÜHRNSCHOPF, E.-P.: Principles of image reconstruction in X-ray computer tomography. Siemens Forsch.-u. Entwickl.-Ber. 7 (1978) 196 - 203.

    Google Scholar 

  11. Pfeiler, M., Linke, G.: Computertomographie und konventionelle f Radiologie, eine physikalisch-technische Gegenüberstellung. Radiol. Diagn. 20 (1979) 604–617.

    Google Scholar 

  12. Barett, H.H., Swindell, W.: Radiological Imaging (The Theory of Image Formation, Detection, and Processing) Acad. Press, New York 1981.

    Google Scholar 

  13. Pfeiler, M.: Röntgen-Computertomographie; Einführung und Überblick über den Stand der Technik. Biomed. Tech. 20 (1980) 604–617.

    Google Scholar 

  14. Ritman, E.L., Sturm, R.E., Wood, E.H.: Needs, performance requirements and proposed design of spatial reconstruction system for diagnostic and investigative studies of cardio-pulmonary and circulatory dynamics. In: [22] 431–451.

    Google Scholar 

  15. Ultra-high-speed, multi-axial computerized X-ray Scanner developed by the Mayo Clinic. Radiology/Nucl. Med. Mag, 9 (1979) 49.

    Google Scholar 

  16. Boyd, D.P., Gould, R.G., Quinn, J.R., Sparks, R., Stanley, J.H., Herrmannsfeldt, W.B.: A proposed dynamic cardial 3-d densitometer for early detection and evaluation of heart disease. In: [57] 2724–2727.

    Google Scholar 

  17. Lackner, K., Thurn, F.: EKG-gesteuerte Kardio-Computertomographie. Fortschr. Rötgenstr. 132 (1980) 164–169.

    Article  Google Scholar 

  18. Hacker, H. (1977) Time controlled computertomographic angiography. J. Comp. Assist. Tomogr. 4 (1977) 405–409.

    Article  Google Scholar 

  19. Hoehne, K.E., Boehm, M., Nicolae, G.C.: The processing of X-ray image sequences. In: Advances in Digital Image Processing ( P. Stucki, ed.) Plenum Press, New York (1980) 147–163.

    Google Scholar 

  20. Obermoeller, U., Boehm, M., Hoehne, K.H.: Functional Images from Serial Computer Tomograms. Med. Progr. Technol. 8 (1981) 99–101.

    Google Scholar 

  21. Kuhl, D.E., Edwards, R.O.: Image separation radioisotope scanning. Radiology 80 (1963) 653–661.

    Google Scholar 

  22. Terpogossian, M.M., Phelos, M.E., Brownell, J.R., Cox, I.R. Jr., Davis, D.O., Evens, R.G. (eds.): Reconstruction tomography in diagnostic radiology and nuclear medicine. University Park Press, Baltimore London Tokyo, 1977.

    Google Scholar 

  23. Budinger, T.F., Gullberg, G.T.: Transverse section reconstruction of gamma-ray emitting radionuclides in patients. In: [22] 315–342.

    Google Scholar 

  24. Phelps, M.E., Hoffmann, E.J., Mullani, N.A., Higgins, C.S., Terpogossian, M.M.: Some performance and design characteristics of PETT III. In: [22] 371–392.

    Google Scholar 

  25. Terpogossian, M.M., Phelps, M.E., Hoffmann, E.J., Coleman, R.E.: The performance of PETT III. In: [22] 359–369.

    Google Scholar 

  26. Cho, Z.H., Ericksson, L., Chan, J.: A circular ring transverse axial positron camera. In: [22] 393–421.

    Google Scholar 

  27. Stoddart, H.F., Stoddart, H.A.: A new development in single gamma transaxial tomography union carbide focused collimator scanner. In: [57] 2710–2712.

    Google Scholar 

  28. Strelzoff, A.: The radionuclide brain imager. Union Carbide Imaging Systems, Norwood (Imaging systems, vol 1 ) 1978.

    Google Scholar 

  29. Ell, P.J., Jarritt, P.H., Langford, R., Pearce, P.C., Deacon, J.M.: Is there a future for single photon emission tomography? Fortschr. Roentgenstr. 130 (1979) 499–507.

    Article  Google Scholar 

  30. Mundinger, F., Weigel, F., Ostertag, Ch.B.: Vergleichende emissionstomographische und transmissionstomographische Untersuchungen kranieller und intrakranieller Erkrankungen. Nucl, Med. 19 (1980) 207–212.

    Google Scholar 

  31. Budinger, T.F., Derenzo, S.E., Gullberg, G.T., Greenberg, W.L., Huesman, R.H.: Emission computer assisted tomography with single- photon and positron annihilation photon emitters. J. Compu. Assist. Tomogr. 1 (1977) 131–145.

    Article  Google Scholar 

  32. Patton, J.A.: Emission tomography. In: [33].

    Google Scholar 

  33. Coulam, C., Erickson, J.J., Rollo, F.D., James, A.E. et al. (eds.): Physical basis of medical imaging. Appleton-Century- Crofts, New York, 1980.

    Google Scholar 

  34. Jaszczak, R.J., Chang, L.T., Stein, N.A., Moore, F.E.: Whole- body Singlephoton Emission Computed Tomography using Dual, Large- field-of-view Scintillation Cameras. Phys. Med. Biol. 24 (1979) 1123–1143.

    Article  Google Scholar 

  35. Jaszczak, R.J., Coleman, R.E., Chun Bim Lin: SPECT: Single photon emission computed tomography. IEEE Trans, on nucl. NS-27 (1980) 1137–1153.

    Google Scholar 

  36. Terpogossian, M.M., Mullani, N.A., Hood, J., Higgins, C.S., Currie, M.C.: A Multislice Positron Emission Computed Tomograph (PET IV) Yielding Transverse and Longitudinal Images. Radiology 128 (1978) 477–484.

    Google Scholar 

  37. Terpogossian, M.M., Raichle, M.E., Sobel, B.E.: Positron-Emission Tomography. Scientific American 243 (1980) 170–181.

    Article  Google Scholar 

  38. Ziedses Des Plantes, B.G.: Serieskopie. Eine röntgenographische Methode, welche ermöglicht, mit Hilfe einiger Aufnahmen, eine un-endliche Reihe paralleler Ebenen in Reihenfolge gesondert zu be-trachten. Fortschr. Rötgenstr. 57 (1938) 605–616.

    Google Scholar 

  39. Early, P.J., Raczak, M.A., Sodee, D.B.: Textbook of nuclear medicine technology. The C. V. Moshby Company, St. Louis, Toronto London 1979.

    Google Scholar 

  40. Vogel, R.A., Kirch, D., Lefree, M., Steele, P.: A New Method of Multiplanar Emission Tomography Using a Seven Pinhole Collimator and an Anger Scintillation Camera. J. Nucl. Med. (1978) 648–654.

    Google Scholar 

  41. Lefree, M.T., Vogel, R.A., Kirch, D.L., Steele, P.P.: Seven-Pinhole Tomography - A Technical Description. J. Nucl. Med. 22 (1981) 48–54.

    Google Scholar 

  42. Barrett, H.H.: Fresnel Zone Plate Imaging in Nuclear Medicine. J. Nucl. Med. 13 (1972) 382–385.

    Google Scholar 

  43. Barrett, H.H., Horrigan, F.A.: Fresnel Zone Plate Imaging of Gamma Rays, Theory. Appl. Optics 12 (1973) 2686–2702.

    Article  Google Scholar 

  44. Rogers, W.L., Jones, L.W., Beierwaltes, W.H.: Imaging in Nuclear Medicine with Incoherent Holography. Optical Engineer. 12 (1973) 13–22.

    Google Scholar 

  45. Tipton, M.D., Dowdey, J.E., Bonte, F.J., Caulfield, H.J.s Coded Aperture Imaging using On-Axis Fresnel Zone Plates and Extended Gamma-Ray source: Radiology 112 (1974) 155–158.

    Google Scholar 

  46. Budinger, T.F., Macdonald, B.: Reconstruction of the Fresnel-Coded Gamma Camera Images by Digital Computer. J. Nucl. Med. 16 (1975) 309–313.

    Google Scholar 

  47. Farmelant, M.H., Demeester, G., Wilson, D., Barrett, H.H.: Initial Clinical Experiences with Fresnel Zone-Plate Images. J. Nucl. Med. 16 (1976) 183–187.

    Google Scholar 

  48. Reinhardt, E.R.: Abbildungssysteme mit codierenden Aperturen und ihre Anwendung in der Radiologie. Dissert. Univ. Stuttgart, 1979

    Google Scholar 

  49. Chiu, M.Y., Barrett, H.H., Simpson, R.G., Chou, C., Arendt, J.W. Gindi, G.R.: Three-dimensional radiographic imaging with a re-stricted view angle. J. Opt. Soc. Am. 69 (1979) 1323–1333.

    Article  Google Scholar 

  50. Chiu, M.Y., Barrett, H.H., Simpson, R.G.: Three-dimensional re-construction from planar projections. J. Opt. Soc. Am. 70 (1980) 755–761.

    Article  MathSciNet  Google Scholar 

  51. Edholm, P., Granlund, G., Knutsson, H., Petersson, C.: Ectomography. A new radiographic method for reproducing a selected slice of varying thickness. Acta Radiologica 21 (1980) 433–442.

    Google Scholar 

  52. Knutsson, H.E., Edholm, P., Granlund, G.H., Petersson, C.U.: Ectomography - A New Radiographic Reconstruction Method - I. Theory and Error Estimates. IEEE Trans. Biomed. Eng. BME- (1980) 640–648.

    Google Scholar 

  53. Petersson, C.U., Edholm, P., Granlund, G.H., Knutsson, H.E.: Ectomography - A New Radiographic Reconstruction Method - II. Computer Simulated Experiments. IEEE Trans. Biomed. Eng. BME- 27 (1980) 649–655.

    Article  Google Scholar 

  54. Grant, D.G.: Tomosynthesis. A three-dimensional radiographic im-aging technique. IEEE Trans. Biomed. Engn. BME-19 (1972) 20–28.

    Google Scholar 

  55. Groh, G.: Tomosynthesis and coded aperture imaging. New approa-ches to 3-dimensional imaging in diagnostic radiography. Proc. Roy. Soc. Lond. B 195 (1977) 299.

    Article  Google Scholar 

  56. HANSON, K.M.: Proton computed tomography. In [58] 97–107.

    Google Scholar 

  57. Workshop on physics and engineering in computerized tomography. Newport Beach, California, January 17–19, 1979. IEEE Trans. Nucl Sei. NS-26, No. 2, part. 2.

    Google Scholar 

  58. Raviv, J., Greenleaf, F., Herman, G. (eds.): Computer aided tomography and ultrasonics in medicine. Proceedings of the IFIP TC- 4 Working Conference on Computer Aided Tomography and Ultraso-nics in Medicine. North-Holland, Amsterdam New York Oxford.

    Google Scholar 

  59. PFEILER, M.s Neuere Entwicklungen der Computertomographie (un-ter Einbeziehung computertomographischer Nicht-Röntgenverfah-ren). Röntgenprax. 34 (1981) 3–13.

    Google Scholar 

  60. Ganssen/ A., Loeffler, W., Oppelt, A., Schmidt, F.: Kernspin- Tomographie. Computertomographie 1 (1981) 2–10.

    Google Scholar 

  61. Male, S.: How does NMR work? New Sei. 81 (1979) 875.

    Google Scholar 

  62. Lösche, A.: Kernreduktion. Monographien der experimentellen und theoretischen Physik. (Hrsg. F.X. Eder) VEB, Deutscher Verlag der Wissenschaften, Berlin 1957.

    Google Scholar 

  63. Damadian, R.: Tumor detection by nuclear magnetic resonance. Sciene 171 (1971) 1151–1153.

    Article  Google Scholar 

  64. Farrah, T.H.C., Becker, E.D.: Pulse and Fourier Transform NMR. Introduction to theory and methods. Academic Press, New York San Francisco London (1971).

    Google Scholar 

  65. Lauterbur, P.: Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature (London) 242 (1973) 190–191.

    Article  Google Scholar 

  66. Lauterbur, P.: Magnetic Resonance Zeugmatography. Pure Appl. Chem. 40 (1975) 149 - 157.

    Google Scholar 

  67. Maudsley, A.A., Oppelt, A., Ganssen, A.: Rapid Measurement of Magnetic Field Distributions Using Nuclear Magnetic Resonance. Siemens Forsch.- u. Entwickl.-Ber. 8 (1979) 326–331

    Google Scholar 

  68. Partain, C.L., Price, R.R., Erickson, J.J., et al.: Nuclear magnetic resonance (NMR) imaging. In: [33].

    Google Scholar 

  69. Kumar, A., Welti, D., Ernst, R.R.: NMR Fourier Zeugmatography. J. Mag. Res. 18 (1975) 69–83.

    Article  Google Scholar 

  70. Damadian, R., Minkoff, L., Goldsmith, M., Stanford, M., Koutcher, J.: Field focusing nuclear magnetic resonance (FONAR): Visualization of a tumor in a live animal. Science 194 (1976) 1430–1432.

    Article  Google Scholar 

  71. Hinshaw, W.: Image Formation by Nuclear Magnetic Resonance: The Sensitive Point Method. J. Appl. Phys. 47 (1976) 3709–3721.

    Article  Google Scholar 

  72. Morris, P.G., Mansfield, P., Pykett, J.L., Ordidge, R.J., Coupland, R.E.: Human whole body line-scan imaging by nuclear magne-tic resonance. In: [57] 2817–2820.

    Google Scholar 

  73. Herman, R.: A chemical clue to disease. New Sei. 81 (1979) 876–877.

    Google Scholar 

  74. Holland, G.N., Moore, W.S., Hawkes, R.C.: NMR neuroradiography. Radiol. 53 (1980) 253–255.

    Google Scholar 

  75. Moore, W.S., Holland, G.N., Kreet, L.: The NMR CAT Scanner - A New Look at the Brain. CT: the journal of computed Tomography 4 (1980) 1–7.

    Article  Google Scholar 

  76. Holland, G.N., Hawkes, R.C., Moore, W.S.s Nuclear Magnetic Resonance (NMR) of the Brain: Coronal and Sagittal Sections. J. Comp. Ass. Tomography 4 (1980) 429–433.

    Google Scholar 

  77. Tomography of the Brain: A Preliminary Clinical Assessment with Demonstation of Pathology. J. Comp. Tomography 4 (1980) 577–586.

    Article  Google Scholar 

  78. Partain, C.L., James, A.E., Watson, J.T., Price, R.R., Coulam, C.M., Rollo, F.D.: Nuclear Magnetic Resonance and Computed To-mography. Radiology 136 (1980) 767–770.

    Google Scholar 

  79. Edelstein, W.A., Hutchison, J.M.S., Smith, F.W., Mallard, J., Johnson, G., Redpath, T.W.: Human whole-body NMR tomographic imaging: normal sections. Brit. J. Radiol. 54 (1981) 149–151.

    Article  Google Scholar 

  80. Zeitler, E., Schittenhelm, R.: Die Kernspintomographie (KST) und ihre klinischen Anwendungsmöglichkeiten. Electromedica 49 (1981) in press.

    Google Scholar 

  81. Gudden, F.: Kernspintomographie, ein neues bildgebendes Verfahren. Röntgenpraxis 34 (1981) 200–205.

    Google Scholar 

  82. Doyle, F.H., Gore, J.C., Pennock, J.M.: Relaxation Rate Enhancement observed in vivo by NMR imaging. J. Comp. Assist. Tomogr. 5 (1981) 295–296.

    Article  Google Scholar 

  83. Budinger, T.F.: Threshold for physiological effects due to RF fields used in NMR imaging. In: [57] 2821–2825.

    Google Scholar 

  84. Hoult, D.I., Busby, S.J.W., Gadian, D.G., Radda, G.K., Richards, R.E., Seeley, P.J.: Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 25 (1974) 285–288.

    Article  Google Scholar 

  85. Epstein, F.H.: Nuclear Magnetic Resonance. A New Tool in Clinical Medicine. The New England Journal of Medicine 304 (1981) 1360–1361.

    Article  Google Scholar 

  86. Ross, B.D., Radda, G.K., Gadian, D.G., Rocker, G., Esiri, M., Falconer-Smith, J.: Examination of a Case of Suspected McArdle’s Syndrome by Nuclear Magnetic Resonance. The New England Journal of Medicine 304 (1981) 1338–1342.

    Article  Google Scholar 

  87. Greenleaf, J.F., Johnson, S.A., Bahn, R.C., Rajagopalan, B., Kenue, S.: Introduction to computed ultrasound tomography. In: [58] 125–136.

    Google Scholar 

  88. Johnson, S.A., Greenleaf, J.F., Rajagopalan, B., Bahn, R.C.: Ultrasound images corrected for refraction and attenuation: A comparison of new high resolution methods. In: [58].

    Google Scholar 

  89. Hiller, D., Ermert, H.: Tomographic Reconstruction of B-Scan Images. In: [91].

    Google Scholar 

  90. Maderlechner, G., Hundt, E., Kronmüller, E., Trautenberg, E.: Experimental Results of Computerized Echo-Tomography. In: [91].

    Google Scholar 

  91. Metherell, A.F. (ed.): Acoustical Imaging. Vol. 10. Plenum Press, New York (1981) in press

    Google Scholar 

  92. Price/ L.R.: Electrical impedance computed tomography (ICT): A new CT imaging technique. In [57] 2736–2739.

    Google Scholar 

  93. Microwaves seek and help destroy cancers. Microwaves 19 (1980) 17.

    Google Scholar 

  94. Jacobi, J.H., Larsen, L.E.: Microwave time delay spectroscopic imagery of isolated canine kidney. Med. Phys. 7 (1980) 1–7.

    Article  Google Scholar 

  95. Shridhar, R.P., Santosh, K., Gregg, E.C.: Computed Tomography with Microwaves. Radiology 135 (1980) 769–770.

    Google Scholar 

  96. Ermert, H., Fülle, G., Hiller, D.: Microwave computerized tomography. Proceed. 11th European Microwave Conference, Amsterdam, 1981, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfeiler, M. (1981). CT Techniques in Medical Imaging. In: Höhne, K.H. (eds) Digital Image Processing in Medicine. Lecture Notes in Medical Informatics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93188-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93188-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10877-1

  • Online ISBN: 978-3-642-93188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics