Stochastic Theory of Population Genetics and Evolution

  • Masatoshi Nei
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 39)


The stochastic theory in population genetics has a long history. In his 1922 paper Fisher first studied the effect of genetic drift on the genetic variability of a random mating population, introducing a new concept of stochastic change of gene frequencies. He reached the conclusion that the rate of change of genetic variability due to genetic drift is extremely small in a large population. This study affected his view as well as his followers on the role of genetic drift in evolution. Some of his followers (e.g. Ford 1975) still maintain the view that virtually all characters of an organism are the product of natural selection and genetic drift is unimportant except in an extremely small population. Fisher himself, however, was aware of the importance of the stochastic factor in evolution at least in the initial process of gene frequency increase. In fact, it was Fisher (1922, 1930) and Haldane (1927) who showed that genetic drift will eliminate a majority of advantageous mutations in a few generations after they occur and only a small proportion of them will be fixed in the population.


Genetic Drift Gene Substitution Selection Intensity Neutral Theory Neutral Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, F. J. 1972. Darwinian versus non-Darwinian evolution in natural populations of Drosophila. Proc. 6th Berkeley Symp. Math. Stat. Prob. V: 211–236.Google Scholar
  2. Bodmer, W. F. and A. W. F. Edwards. 1962. Linkage and recombination in evolution. Adv. Genet. 11: 1–100.CrossRefGoogle Scholar
  3. Chakraborty, R. and M. Nei. 1976. Hidden genetic variability within electromorphs in finite populations. Genetics 84: 385–393.Google Scholar
  4. Chakraborty, R. and M. Nei. 1977. Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31: 347–356.CrossRefGoogle Scholar
  5. Chakraborty, R., P. A. Fuerst, and M. Nei. 1978. Statistical studies on protein polymorphism in natural populations. II. Gene differentiation between populations. Genetics 88: 367–390.Google Scholar
  6. Chakraborty, R., P. A. Fuerst, and M. Nei. 1980. Statistical studies on protein polymorphism in natural populations. III. Distribution of allele frequencies and the number of alleles per locus. Genetics (in press)Google Scholar
  7. Clayton, G. A. and A. Robertson. 1957. Mutation and cumulative variation. Amer. Nat. 89: 151–155.CrossRefGoogle Scholar
  8. Dayhoff, M. O., ed. 1972. Atlas of Protein Sequence and Structure. Vol. 5. Natl. Biomed. Res. found., Washington, D.C.Google Scholar
  9. Darwin, C. 1872. The Origin of Species. 6th ed. D. Appleton, London.Google Scholar
  10. Dempster, E. R. 1955. Maintenance of genetic heterogeneity. Cold Spring Harbor Symp. Quant. Biol. 20: 25–32.CrossRefGoogle Scholar
  11. Ewens, W. J. 1964. The maintenance of alleles by mutation. Genetics 50: 891–898.Google Scholar
  12. Felsenstein, J. 1976. The theoretical population genetics of variable selection and migration. Ann. Rev. Genet. 10: 253–280.Google Scholar
  13. Fisher, R. A. 1922. On the dominance ratio. Proc. Roy. Soc. Edinburgh 42: 321–341.Google Scholar
  14. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.zbMATHGoogle Scholar
  15. Fisher, R. A. and E. B. Ford. 1947. The spread of a gene in natural conditions in a colony of the moth Panaxia dominula L. Heredity 1: 143–174.CrossRefGoogle Scholar
  16. Fitch, W. M. and E. Margoliash. 1967. A method for estimating the number of invariant amino acid coding positions in a gene using cytochrome c as a model case. Biochem. Genet. 1: 65–71.CrossRefGoogle Scholar
  17. Ford, E. B. 1975. Ecological Genetics. 4th ed. Chapman and Hall Ltd., London.Google Scholar
  18. Frelinger, J. A. 1972. The maintenance of transferrin polymorphism in pigeons, Proc. Natl. Acad. Sci. US 69: 326–329Google Scholar
  19. Fuerst, P. A. and R. E. Ferrell. 1980. The stepwise mutation model: an experimental evaluation utilizing hemoglobin variants. Genetics (in press)Google Scholar
  20. Fuerst, P. A., R. Chakraborty, and M. Nei. 1977. Statistical studies on protein polymorphism in natural populations. I. Distribution of single-locus heterozygosity. Genetics 86: 455–483.Google Scholar
  21. Gillespie, J. H. 1977. Sampling theory for alleles in a random environment. Nature 266: 443–445.CrossRefGoogle Scholar
  22. Gillespie, J. H. 1978. A general model to account for enzyme variation in natural populations. V. The SAS-CFF model. Theoret. Popul. Biol. 14: 1–45.zbMATHGoogle Scholar
  23. Gillespie, J. H. and C. H. Langley. 1974. A general model to account for enzyme variation in natural populations. Genetics 76: 837–848.Google Scholar
  24. Gulick, J. T. 1905. Evolutiony Racial and Eabitudinal. Publ. 25. Carnegie Institution of Washington.Google Scholar
  25. Haldane, J. B. S. 1927. The mathematical theory of natural and artificial selection. Part V. Proc. Comb. Philos. Soc. 23: 838–844.zbMATHCrossRefGoogle Scholar
  26. Haldane, J. B. S. 1964. A defense of beanbag genetics. Perspectives in Biology and Medicine 7: 343–359.Google Scholar
  27. Haldane, J. B. S. and S. D. Jayakar. 1963. Polymorphism due to selection of varying direction. J. Genet. 58: 237–242.CrossRefGoogle Scholar
  28. Hedrick, P. W. 1974. Genetic variation in a heterogeneous environment. I. Temporal heterogeneity and the absolute dominance model. Genetics 78: 757–770.Google Scholar
  29. Hedrick, P. W., M. E. Ginevan, and E. P. Ewing. 1976. Genetic polymorphism in heterogeneous environments. Ann. Rev. Ecol. Syst. 7: 1–32.CrossRefGoogle Scholar
  30. Holt, S. B. 1961. Quantitative genetics of finger-print patterns. Brit. Med. Bull. 17: 247–250.Google Scholar
  31. Karlin, S. and U. Lieberman. 1974. Random temporal variation in selection intensities: Case of a large population size. Theoret. Popul. Biol. 6: 355–382.MathSciNetCrossRefGoogle Scholar
  32. Kimura, M. 1965. A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc. Natl. Acad. Sci. US 54: 731–736.Google Scholar
  33. Kimura, M. 1968. Evolutionary rate at the molecular level. Nature 217: 624–626.CrossRefGoogle Scholar
  34. Kimura, M. 1979. The neutral theory of molecular evolution. Scientific American 241: 98–126.CrossRefGoogle Scholar
  35. Kimura, M. 1979. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci. US 76: 3440–3444.Google Scholar
  36. Kimura, M. and J. F. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.Google Scholar
  37. Kimura, M. and T. Maruyama. 1971. Pattern of neutral polymorphism in a geographically structured population. Genet. Res. 18: 125–131.CrossRefGoogle Scholar
  38. Kimura, M. and T. Ohta. 1971. Protein polymorphism as a phase of molecular evolution. Nature 229: 467–469.CrossRefGoogle Scholar
  39. Kimura, M. and T. Ohta. 1973. Mutation and evolution at the molecular level. Genetics 73 (Suppl.): 19–35.Google Scholar
  40. Kimura, M. and T. Ohta. 1974. On some principles governing molecular evolution. Proc. Natl. Acad. Sci. US 71: 2848–2852.CrossRefGoogle Scholar
  41. Koehn, R. K. 1969. Esterase heterogeneity: Dynamics of a polymorphism. Science 163: 943–944.CrossRefGoogle Scholar
  42. Kojima, K., J. Gillespie, and Y. N. Tobari. 1970. A profile of Drosophila species’ enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolizing systems and some other enzymes. Biochem. Genet. 4: 627–637.Google Scholar
  43. Langley, C. H. and W. M. Fitch. 1974. An examination of the constancy of the rate of molecular evolution. J. Mol. Evol. 3: 161–177.Google Scholar
  44. Langley, C. H., Y. N. Tobari, and K. Kojima. 1974. Linkage disequilibrium in natural populations of drosophila melanogaster. Genetics 78: 921–936.Google Scholar
  45. Latter, B. D. H. 1975. Influence of selection pressures on enzyme polymorphisms in Drosophila. Nature 257: 590–592.CrossRefGoogle Scholar
  46. Lederberg, J. and E. M. Lederberg. 1952. of bacterial mutants. J. Bacteriology 63: 399–406.Google Scholar
  47. Levene, H. 1953. Genetic equilibrium when available. Amer. Nat. 87: 331–333.CrossRefGoogle Scholar
  48. Lewontin, R. C. 1964. The interaction of Genetics 50: 757–782.Google Scholar
  49. Lewontin, R. C., L. R. Ginzburg, and S. D. explanation for large amounts of genie Genetics 88: 149–170.Google Scholar
  50. Li, W.-H. 1976. A mixed model of mutation for electrophoretic identity of proteins within and between populations. Genetics 83: 423–432.Google Scholar
  51. Li, W.-H. 1977. Maintenance of genetic variability under mutation and selection pressures in a finite population. Proc. Natl. Acad. Sci. US 74: 2509–2513.Google Scholar
  52. Li, W.-H. 1978. Maintenance of genetic variability under the joint effect of mutation, selection and random drift. Genetias 90: 349–382.Google Scholar
  53. Li, W.-H. 1979. Maintenance of genetic variability under the pressure of neutral and deleterious mutations in a finite population. Genetias 92: 647–667.Google Scholar
  54. Li, W.-H. 1979. Variance of genetic distance and correlation of heterozygosity between populations under the pressure of stepwise mutation. Theoret. Popul. Biol. 15: 171–190.Google Scholar
  55. Li, W.-H. and M. Nei. 1975. Drift variances of heterozygosity and genetic distance in transient states. Genet. Res. 25: 229–248.Google Scholar
  56. Li, W.-H. and M. Nei. 1977. Persistence of common alleles in two related populations or species. Genetias 86: 901–914.MathSciNetGoogle Scholar
  57. Maruyama, T. 1972. A note on the hypothesis: protein polymorphism as a phase of molecular evolution. J. Mol. Evol. 1: 201–219.CrossRefGoogle Scholar
  58. Mayr, E. 1959. Where are we? Cold Spring Harbor Symp. Quant. Biol. 24: 409–440.CrossRefGoogle Scholar
  59. Mayr, E. 1963. Animal Speaies or Evolution. Harvard Univ. Press, Cambridge, Mass.Google Scholar
  60. McDonald, J. F. and F. J. Ayala. 1974. Genetic response to environmental heterogeneity. Nature 250: 572–574.CrossRefGoogle Scholar
  61. Monod, J. 1971. Chanae and Neaessity. Translated by A. Wainhouse. Originally published in France as Le Hasard et la Neaessité by editions du Seuil, Paris, 1970. Alfred A. Knopf, Inc., New York.Google Scholar
  62. Mukai, T., L. E. Mettler, and S. I. Chigusa. 1971. Linkage disequilibrium in a local population of Drosophila melanogaster. Proa. Natl. Aaad. Sai. US 68: 1065–1069.Google Scholar
  63. Nei, M. 1975. Moleaular Population Genetias and Evolution. North Holland, Amsterdam.Google Scholar
  64. Nei, M. 1976. Mathematical models of speciation and genetic distance. In: Population Genetias and Eaology. S. Karlin and E. Nevo, eds. Academic Press, New York. 723–765.Google Scholar
  65. Nei, M. 1978. The theory of genetic distance and evolution of human races. Japan. J. Hum. Genet. 23: 341–369.Google Scholar
  66. Nei, M. and W.-H. Li. 1975. Probability of identical monomorphism in related species. Genet. Res. 26: 31–43.CrossRefGoogle Scholar
  67. Nei, M. and W.-H. Li. 1976. The transient distribution of allele frequencies under mutation pressure. Genet. Res. 28: 205–214.CrossRefGoogle Scholar
  68. Nei, M. and W.-H. Li. 1980. Non-random association between electromorphs and inversion chromosomes in finite populations. Genet. Res, (in press)Google Scholar
  69. Nei, M. and A. K. Roychoudhury. 1973. Probability of fixation and mean fixation time of an overdominant mutation. Genetics 74: 371–380.Google Scholar
  70. Nei, M. and A. K. Roychoudhury. 1974. Genie variation within and between the three major races of man, Caucasoids, Negroids, and Mongoloids. Amer. J. Hum. Genet. 26: 421–443.Google Scholar
  71. Nei, M. and A. K. Roychoudhury. 1980. Genetic relationship and evolution of human races, (submitted)Google Scholar
  72. Nei, M. and Y. Tateno. 1975. Interlocus variation of genetic distance and the neutral mutation theory. Proc. Natl. Acad. Sci. US 72: 2758–2760.Google Scholar
  73. Nei, M. and S. Yokoyama. 1976. Effects of random fluctuation of selection intensity on genetic variability in a finite population. Japan. J. Genet. 51: 355–369.CrossRefGoogle Scholar
  74. Nei, M., T. Maruyama, and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.CrossRefGoogle Scholar
  75. Nei, M., R. Chakraborty, and P. A. Fuerst. 1976. Infinite allele model with varying mutation rate. Proc. Natl. Acad. Sci. US 73: 4164–4168.Google Scholar
  76. Nei, M., P. A. Fuerst, and R. Chakraborty. 1976. Testing the neutral mutation hypothesis by distribution of single-locus heterozygosity. Nature 262: 491–493.CrossRefGoogle Scholar
  77. Nei, M., P. A. Fuerst, and R. Chakraborty. 1978. Subunit molecular weight and genetic variability of proteins in natural populations. Proc. Natl. Acad. Sci. US 75: 3359–3362.Google Scholar
  78. Ohta, T. 1973. Slightly deleterious mutant substitutions in evolution. Nature 246: 96–98.CrossRefGoogle Scholar
  79. Ohta, T. 1975. Statistical analyses of Drosophila and human protein polymorphisms. Proc. Natl. Acad. Sci. US 72: 3194–3196.CrossRefGoogle Scholar
  80. Ohta, T. 1977. Extension to the neutral mutation random drift hypothesis. Proc. 2nd Taniguchi Intl. Symp. Biophysics.Google Scholar
  81. Powell, J. R. 1971. Genetic polymorphisms in varied environments. Scienoe 174: 1035–1036.CrossRefGoogle Scholar
  82. Powell, J. R. and C. E. Taylor. 1979. Genetic variation in ecologically diverse environments. Amer. Scientist 67: 590–596.Google Scholar
  83. Ramshaw, J. A. M., J. A. Coyne, and R. C. Lewontin. 1980. The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics (in press)Google Scholar
  84. Rigby, P. W. J., B. D. Burleigh, Jr., and B. S. Hartley. 1974. Gene duplication in experimental enzyme evolution. Nature 251: 200–204.CrossRefGoogle Scholar
  85. Robertson, A. 1967. The nature of quantitative genetic variation. In: Heritage from Mendel. R. A. Brink, ed. Univ. of Wisconsin Press, Madison, Wisconsin. 265–280.Google Scholar
  86. Soule, M. 1976. Allozyme variation: its determinants in space and time. In: Molecular Evolution. F. J. Ayala, ed. Sinauer Associates, Sunderland, Mass. 60–77.Google Scholar
  87. Takahata, N. and M. Kimura. 1979. Genetic variability maintained in a finite population under mutation and autocorrelated random fluctuation of selection intensity. Proc. Natl. Acad. Sci. US 76: 5813–5817.Google Scholar
  88. Waddington, C. H. 1957. The Strategy of the Genes. Allen and Unwin, London.Google Scholar
  89. Watterson, G. A. 1977. Heterosis or neutrality? Genetics 85: 789–814.MathSciNetGoogle Scholar
  90. Wilson, A. C., S. S. Carlson, and T. J. White. 1977. Biochemical evolution. Ann. Rev. Biochem. 46: 573–639.Google Scholar
  91. Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.Google Scholar
  92. Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. 6th Intl. Cong. Genet. 1: 356–366.Google Scholar
  93. Wright, S. 1935. The analysis of variance and the correlation between relatives with respect to deviations from an optimum. J. Genet. 30: 243–256.CrossRefGoogle Scholar
  94. Wright, S. 1938. Size of population and breeding structure in relation to evolution. Science 87: 430–431.Google Scholar
  95. Wright, S. 1948. On the roles of directed and random changes in gene frequency in the genetics of populations. Evolution 2: 279–294.CrossRefGoogle Scholar
  96. Wright, S. 1949. Adaptation and selection. In: Genetics, Paleontology, and Evolution. G. L. Jepson, G. G. Simpson, and E. Mayr, eds. Princeton Univ. Press, Princeton, N.J. 365–389.Google Scholar
  97. Wright, S. 1971. Random drift and the shifting balance theory of evolution. In: Mathematical Topics in Population Genetics. K. Kojima, ed. Springer-Verlag, Berlin. 1–31.Google Scholar
  98. Wright, S. 1978. Variability Within and Among Natural Populations. Vol. 4 of: Evolution and the Genetics of Populations. Univ. of Chicago Press, Chicago.Google Scholar
  99. Yokoyama, S. and M. Nei. 1979. Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics 91: 609–626.MathSciNetGoogle Scholar
  100. Zuckerkandl, E. and L. Pauling. 1965. Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins. V. Bryson and H. J. Vogel, eds. Academic Press, New York. 97–166.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Masatoshi Nei
    • 1
  1. 1.Center for Demographic and Population GeneticsUniversity of Texas at HoustonHoustonUSA

Personalised recommendations