Skip to main content

Biological Variations of IgM Antibody Affinity

  • Conference paper
Systems Theory in Immunology

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 32))

  • 105 Accesses

Abstract

Variations of antibody affinity with antigen dose and time after immunization, such as a more rapid increase of affinity after lower doses of antigen (1), have been explained by the maturation theory (2). According to this theory, there are specific B lymphocytes with different receptor affinity prior to antigenic stimulation. Upon interaction of cell receptors with antigen the lymphocyte will proliferate and secrete antibodies with the same affinity as that of the cell receptors. As the antigen concentration decreases with time after immunization, the higher affinity cells will be selected out and predominate in the population. After lower doses of antigen this selection proceeds more rapidly than after higher doses. Hence, during the immune response there are parallel changes in average affinity at the serum antibody and cell receptor level (3, 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisen H.N. and Siskind G.W., Biochemistry 3: 996, 1964.

    Article  Google Scholar 

  2. Siskind G.W. and Benacerraf B., Adv. Immunol. 10: 1, 1969.

    Article  Google Scholar 

  3. Davie J.M. and Paul W.E., J. Exp. Med. 135: 643, 1972.

    Article  Google Scholar 

  4. Davie J.M. and Paul W.E., J. Exp. Med. 135: 660, 1972.

    Article  Google Scholar 

  5. Cunningham A.J., Contemp. Top. Immunol. 3: 1, 1974.

    Google Scholar 

  6. Doria G., Schiaffini G., Garavini M. and Mancini C., J. Immunol. 109: 1245, 1972.

    Google Scholar 

  7. Gershon R.K. and Paul W.E., J. Immunol. 106: 872, 1971.

    Google Scholar 

  8. Doria G., Agarossi G., Boraschi D. and Amendolea M.A., Immunology 32: 539, 1977.

    Google Scholar 

  9. Urbain J., Van Acker A., De Vos-Cloetens C., Urbain-Vasanten G., Immunochemistry 9: 121, 1972.

    Article  Google Scholar 

  10. Andersson B., J. Exp. Med. 132: 77, 1970.

    Article  Google Scholar 

  11. Ciaflin L. and Merchant B., Cell. Immunol. 5: 209, 1972.

    Article  Google Scholar 

  12. Wu C.Y. and Cinader B., Cell. Immunol. 8: 189, 1973.

    Article  Google Scholar 

  13. Goidl E.A., Barondess J.J. and Siskind G.W., Immunology 29: 629, 1975.

    Google Scholar 

  14. Baker P.J., Prescott B., Stashak P.W. and Amsbaugh D.F., J. Immunol. 107: 719, 1971.

    Google Scholar 

  15. Möller E., Bullock W.W. and Makelä O., Eur. J. Immunol. 3: 172, 1973.

    Article  Google Scholar 

  16. Huchet R. and Feldman M., Eur. J. Immunol. 3: 49, 1973.

    Article  Google Scholar 

  17. Roszman T.L., Cell. Immunol. 11: 305, 1974.

    Article  Google Scholar 

  18. Vicari G. and Courtenay B.M., Immunochemistry 14: 253, 1977.

    Article  Google Scholar 

  19. Voss E.W. Jr and Eisen H.N., Fed. Proc. 27: 684, 1968.

    Google Scholar 

  20. Paul W.E., Benacerraf B., Siskind G.W., Goidl E.A. and Reisfeld R.A., J. Exp. Med. 130: 77, 1969.

    Article  Google Scholar 

  21. Servas H. and Mäkelä O., Immunochemistry 7: 933, 1970.

    Article  Google Scholar 

  22. Jones J.M., Amsbaygh D.F. and Prescott B., J. Immunol. 116: 52, 1976.

    Google Scholar 

  23. De Lisi C., J. Immunol. 117: 2249, 1976.

    Google Scholar 

  24. Oriol R. and Rousset M., J. Immunol. 112: 2235, 1974.

    Google Scholar 

  25. Doria G., Mancini C. and De Lisi C., J. Immunol. 121: 2030, 1978.

    Google Scholar 

  26. Werblin T.P. and Siskind G.W., Immunochemistry 9: 987, 1972.

    Article  Google Scholar 

  27. Doria G., Gorini G. and Di Michele A., Proc. Natl. Acad. Sci.(U.S.) 74: 707, 1977.

    Article  Google Scholar 

  28. Neri R., Pini C., Vicari G. and Doria G., Eur. J. Immunol. 8: 823, 1978.

    Article  Google Scholar 

  29. Werblin T.P., Kim Y.T., Quagliata F. and Siskind G.W., Immunology 24: 477, 1973.

    Google Scholar 

  30. Tada T., Taniguchi M. and Takemori T., Transplant. Rev. 26: 106, 1975.

    Google Scholar 

  31. Herzenberg L.A., Okumura K. and Metzler C.M., Transplant. Rev. 27: 57, 1975.

    Google Scholar 

  32. Urbain J., Ann. Immunol. 128 C.: 445, 1977.

    Google Scholar 

  33. Warren R.W. and Davie J.M., J. Exp. Med. 146: 1627, 1977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doria, G. (1979). Biological Variations of IgM Antibody Affinity. In: Bruni, C., Doria, G., Koch, G., Strom, R. (eds) Systems Theory in Immunology. Lecture Notes in Biomathematics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93130-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93130-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09728-0

  • Online ISBN: 978-3-642-93130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics