Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 30))

Abstract

Just as atoms are the fundamental units of elements, the cell is the fundamental unit of structure of all living things except viruses (see Appendix B). Simplistically, the cell consists of a collection of substances surrounded by a membrane. One of the most important of these substances is the genetic (or nuclear) material which directs the activities of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, B. and Doll, R. Environmental factors and cancer incidence and mortality in different countries with special references to dietary practices, Int. J. Cancer, 15, 617–631, 1975.

    Article  Google Scholar 

  2. Baserga, R. Multiplication and Division in Mammalian Cells, M. Dekker, New York, 1976.

    Google Scholar 

  3. Baserga, R. The relationship of the cell cycle to tumor growth and control of cell division: a review, Cancer Res., 25, 581–590, 1965.

    Google Scholar 

  4. Bell, G.I. Models of carcinogenesis as an escape from mitotic inhibitors, Science, 192, 569–572, 1976.

    Article  Google Scholar 

  5. Bichel, P. and Barfod, N.M. Specific chalone inhibition of the regeneration of the JB-1 ascites tumor studied by flow microfluorometry, Cell Tissue Kinet., 10, 183–193, 1977.

    Google Scholar 

  6. Blumenson, L.E. and Bross, I.D.J. A possible mechanism for enchancement of increased production of tumor angiogenic factor. Growth, 40, 205–209, 1976.

    Google Scholar 

  7. Braun, A.C. The Biology of Cancer, Addison-Wesley, Reading, 1974.

    Google Scholar 

  8. Bullough, W.S. Mitotic and functional homeostasis: a speculative review, Cancer Res., 25, 1683–1727, 1965.

    Google Scholar 

  9. Bullough, W.S. Mitotic control in adult mammalian tissues, Biol. Rev. Cambridge Phil. Soc, 50, 99–127, 1975.

    Article  Google Scholar 

  10. Deakin, A.S. Model for initial vascular patterns in melanoma transplants, Growth, 40, 191–201, 1976.

    Google Scholar 

  11. Folkman, J., Merler, E., Abernathy, C., and Williams, G. Isolation of ax tumor factor responsible for angiogenesis, J. Exp. Med., 133, 275–288. 1971.

    Article  Google Scholar 

  12. Folkman, J. Tumor angiogenesis: therapeutic implications, New. Eng. J. Med., 285, 1182–1186, 1971.

    Article  Google Scholar 

  13. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors, Ann. Surg., 175, 409–416, 1972.

    Article  Google Scholar 

  14. Folkman, J. Tumor angiogenesis factor, Cancer Res., 34, 2109–2113, 1974.

    Google Scholar 

  15. Folkman, J. and Klagsbrun, M. Tumor angiogenesis: effect on tumor growth and immunity. In Fundamental Aspects of Neoplasia, 401–412, edited by Gottlieb, A.A., Plescia, O.J. and Bishop, D.H.L., New York: Springer-Verlag, 1975.

    Google Scholar 

  16. Folkman, J. and Cotran, R. Relation of vascular proliferation to tumor growth, Intl. Rev. Exptl. Pathol., 16, 207–248, 1976.

    Google Scholar 

  17. Forscher, B.K. and Houck, J.C. (editors). Chalones: Concepts and Current Researches, Monograph 38, National Cancer Institute, Bethesda, 1973.

    Google Scholar 

  18. Fraumeni, J.F. (editor). Persons at high risk of cancer. An Approach to Cancer Etiology and Control, Academic Press, New York, 1975.

    Google Scholar 

  19. Gelfant, S. Patterns of cell division: the demonstration of discrete cell populations. In Methods of Cell Physiology, Vol. 2 (D.M. Prescott, Ed.), Academic Press, New York, 1966.

    Google Scholar 

  20. Glass, L. Instability and mitotic patterns in tissue growth, Trans. ASME: J. Dyn. Syst. Measure Contr. Ser. G, 95, 324–327, 1973.

    Article  Google Scholar 

  21. Houck, J.C. (editor). Chalones, Elsevier, New York, 1976.

    Google Scholar 

  22. Howard, A. and Pelc. S.R. Synthesis of deoxyribonuncleic acid in normal and irradiated cells and its relation to chromosome breakage, Heredity (Suppl), 6, 261–273, 1953.

    Google Scholar 

  23. Lajtha, L.G. On the concept of the cell cycle, J. Cell Comp. Physiol. Suppl. 1, 62, 143–145, 1963.

    Google Scholar 

  24. Leeson, T.S. Histology, 3rd ed., Saunders, Philadelphia, 1976.

    Google Scholar 

  25. Liotta, L.A., Kleinerman, J. and Saidel, G.M. Quantitative relationships of intravascular tumor cells, tumor vessels and pulmonary metastases following tumor implantation, Cancer Res., 34, 997–1004, 1974.

    Google Scholar 

  26. Liotta, L.A., Saidel, G.M. and Kleinerman, J. Stochastic model of metastases formation, Biometrics 32, 535–550, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  27. Liotta, L.A., Saidel, G.M. and Kleinerman, J. Diffusion model of tumor vascularization and growth, Bull. Math. Biol., 39, 117–128, 1977.

    Google Scholar 

  28. Mazia, D. The Cell Cycle, Scientific American, 230, 54–64, 1974.

    Google Scholar 

  29. Mitchison, J.M. The Biology of the cell cycle, Cambridge University Press, Cambridge, 1971.

    Google Scholar 

  30. Mitchison, J.M. Sequences, pathways and timers in the cell cycle, in Cell Cycle Controls (Podilla, G., Ed.) Academic Press, New York, 1974.

    Google Scholar 

  31. Mohr, R., Althoff, J., Kinzel, V., Suss, R. and Volm, M. Melanoma regression induced by “chalone”: a new tumor inhibiting principle acting in vivo, Nature, 220, 138–139, 1968.

    Article  Google Scholar 

  32. Nowell, P.C. The clonal evolution of tumor cells, Science, 195, 847–851, 1976.

    Google Scholar 

  33. Quastler, H. The analysis of cell population kinetics, in Cell Proliferation (Lamerton L.G. and Fry, R.M.J. (editors), Blackwell Scientific, Oxford, 18–36, 1963.

    Google Scholar 

  34. Rashevsky, N. Mathematical Biophysics. Univ. of Chicago Press, Chicago, 1948.

    Google Scholar 

  35. Rifkin, D.B., Loeb, J.N., Moore, G. and Reich, E. Properties of plasminogen activators formed by neoplastic human cell cultures, J. Exp. Med., 139, 1317–1328, 1974.

    Article  Google Scholar 

  36. Rytomaa, T. and Kiviniemi, K. Regression of generalized leukemia in rat induced by the granulocyte chalone, European J. of Cancer, 6, 401–410, 1970.

    Article  Google Scholar 

  37. Saidel, G.M., Liotta, L.A. and Kleinerman, J. System dynamics of a metastatic process from an implanted tumor, J. Theor. Biol. 56, 417–434, 1975.

    Article  Google Scholar 

  38. Saidel, G.M., Liotta, L.A. and Kleinerman, J. System dynamics of a metastatic process from an implanted tumor, J. Theor. Biol., 55, 417–434, 1976.

    Article  Google Scholar 

  39. Searle, C.E. (editor). Chemical Carcinogens, Am. Chem. Soc, Washington (D.C.), 1976.

    Google Scholar 

  40. Shymko, R.M. and Glass, L. Cellular and geometric control of tissue growth and mitotic instability, J. Theor. Biol., 63, 355–374, 1976.

    Article  Google Scholar 

  41. Suss, R., Kingel, F. and Scribner, J.D. Cancer: Experiments and Concepts, Springer-Verlag, New York, 1973.

    Google Scholar 

  42. Tyson, J. and Kauffman, S. Oscillator control of mitosis, J. Math, Biology, 1, 289–310, 1975.

    Article  MATH  Google Scholar 

  43. Watson, J.D. Molecular biological approach to the cancer problem. In the Biological Revolution. Social Good or Social Evil, edited by Fuller, W., Doubleday, New York, 169–184, 1972.

    Google Scholar 

  44. Watson, J.D. Molecular Biology of the Gene, 3rd ed., W.A. Benjamin, Menlo Park, Cal., 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eisen, M. (1979). Cells. In: Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93126-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93126-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09709-9

  • Online ISBN: 978-3-642-93126-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics