Applications of the Permutation Group in Dynamic Stereochemistry

  • James G. Nourse
Part of the Lecture Notes in Chemistry book series (LNC, volume 12)


A typical problem in dynamic stereochemistry is to determine the mechanism of the rearrangement of a chemical structure such as 1.


Symmetry Group Potential Energy Surface Symmetric Group Chemical System Permutation Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Longuet-Higgins, Mol. Phys., 6, 445 (1963).CrossRefGoogle Scholar
  2. 2.
    J. G. Nourse, J. Amer. Chem. Soc., 99, 2063 (1977).CrossRefGoogle Scholar
  3. 3.
    J. S. Frame, Bull. Amer. Math. Soc., 47, 458 (1941).CrossRefGoogle Scholar
  4. 4.
    E. Ruch, W. Hasselbarth, and B. Richter, Theor. Chim. Acta., 19 288 (1970).CrossRefGoogle Scholar
  5. 5.(a)
    M. Gielen and N. Vanlautem, Bull. Soc. Chim. Belg., 79, 679 (1970).CrossRefGoogle Scholar
  6. 5.(b)
    P. Meakin, E. L. Muetterties, F. N. Tebbe, and J. P. Jesson, J. Amer. Chem. Soc., 93, 4701 (1971).CrossRefGoogle Scholar
  7. 5.(c)
    W. G. Klemperer, J. Chem. Phys., 56, 5478 (1972).CrossRefGoogle Scholar
  8. 5.(d)
    W. Hasselbarth and E. Ruch, Theor. Chim. Acta, 29, 259 (1973).CrossRefGoogle Scholar
  9. 5.(e)
    D. J. Klein and A. H. Cowley, J. Amer. Soc., 97, 1633 (1975).CrossRefGoogle Scholar
  10. 6.
    W. Hasselbarth, E. Ruch, D. J. Klein, and T. H. Seligman, in “Group Theoretical Methods in Physics, R. T. Sharp and B. Kolman, eds., Academic, New York, 1977, p. 617.Google Scholar
  11. 7.
    R. S. Berry, J. Chem. Phys., 32, 923 (1960).CrossRefGoogle Scholar
  12. 8.
    J. G. Nourse and K. Mislow, J. Amer. Chem. Soc., 97, 4571 (1975).CrossRefGoogle Scholar
  13. 9.
    Related ideas of descriptors and “stereochemical quantum numbers” have been discussed. See E. Ruch and I. Ugi, Top. Stereochem., 4, 99 (1969).CrossRefGoogle Scholar
  14. 10.
    J. J. Rotman, “The Theory of Groups, An Introduction”, Allyn and Bacon, Boston, 1965, chap. 6.Google Scholar
  15. 11.
    K. Mislow, Acc. Chem. Res., 9, 26 (1976).CrossRefGoogle Scholar
  16. 12.(a)
    M. Gielen, R. Willem, and J. Brocas, Bull. Chim. Soc. Belg., 82, 617, (1973).CrossRefGoogle Scholar
  17. 12.(b)
    K. Mislow, Acc. Chem. Res., 3, 321, (1970).CrossRefGoogle Scholar
  18. 13.
    J. S. Frame, Bull. Amer. Math. Soc., 49, 81 (1943)CrossRefGoogle Scholar
  19. J. S. Frame, Bull. Amer. Math. Soc., 54, 740 (1948).CrossRefGoogle Scholar
  20. 14.
    J. G. Nourse, to appear.Google Scholar
  21. 15.(a)
    D. Gust, P. Finocchiaro, and K. Mislow, Proc. Natl. Acad. Sci. U.S., 70, 3445 (1973).CrossRefGoogle Scholar
  22. 15.(b)
    K. Mislow, D. Gust, P. Finocchiaro, and R. J. Boettcher, Fortschr. Chem. Forsch. 47, 1-28.Google Scholar
  23. 15.(c)
    J. G. Nourse, Proc Natl. Acad. Sci. U.S., 72, 2385 (1975).CrossRefGoogle Scholar
  24. 16.
    S. MacLane, “Categories for the Working Mathematician”, Springer-Verlag, New York, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • James G. Nourse
    • 1
  1. 1.Computer Science Dept.Stanford UniversityStanfordUSA

Personalised recommendations