Advertisement

Double Cosets and the Evaluation of Matrix Elements

  • T. H. Seligman
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 12)

Abstract

We discuss the use of double coset decompositions for the evaluation of quantum mechanical matrix elements between states symmetry adapted to some finite group. In order to display the essential features we concentrate on the simple case of operators that are invariant under the action of the group, and primitive states that are invariant under the action of a subgroup. Byway of example the normalization matrix element for n-body states symmetry adapted to an IR of Sn are calculated.

Keywords

Matrix Element Double Coset Primitive State Primitive Function Single Particle Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    C. Herring, Rev. Mod. Phys. 34 (1962) 631.CrossRefGoogle Scholar
  2. 2.
    B.R. Junker and D.J. Klein, J. Chem. Phys. 55 (1971) 5533.CrossRefGoogle Scholar
  3. F.A. Matsen, D.J. Klein and D.C. Foyt, J. Chem. Phys. 75 (1971) 1866.Google Scholar
  4. D.J. Klein and W.A. Seitz, Phys. Rev. B8 2276 (1973).Google Scholar
  5. 3.
    D.J. Klein, “Group Theory and its Application III; ed. E.M. Loebel, Academic Press, New York, 1975.Google Scholar
  6. 4.
    P. Kramer and T.H. Seligman, Nucl. Phys. A136 (1969) 545.Google Scholar
  7. P. Kramer and T.H. Seligman, Nucl. Phys. A186 (1972) 49.Google Scholar
  8. 5.
    T.H. Seligman, “Double Coset Decompositions of Finite Groups and the Many-Body Problem” Burg Monographs in Science, Vol. I; ed. D. Clement, Burgverlag, Basel, 1975.Google Scholar
  9. 6.
    E.R. Davidson, J. Chem. Phys. 62 (1975) 400.CrossRefGoogle Scholar
  10. 7.
    W. Hässelbarth, D.J. Klein, E. Ruch and T.H. Seligman, (in preparation).Google Scholar
  11. 8.
    J. Coleman, Queens Lectures (1956).Google Scholar
  12. 9.
    P. Kramer, Z. Physik 216 (1968) 68.CrossRefGoogle Scholar
  13. 10.
    M. Hammermesh, “Group Theory” Academic Press, New York, 1959.Google Scholar
  14. 11.
    A. Antillon, Thesis, Mexico 1978; A. Antillon, G. Lopez and T.H. Seligman (in preparation).Google Scholar
  15. 12.
    T.H. Seligman and W. Zahn, J. Phys. G2 (1976) 79Google Scholar
  16. H.H. Hackenbroich, T.H. Seligman and W. Zahn, Helv. Phys. Acta 50 (1977) 723.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • T. H. Seligman
    • 1
  1. 1.Instituto de FisicaUniversidad Nacional Autónoma de MéxicoMexico

Personalised recommendations