Counting isomers and Such

  • A. Kerber
Part of the Lecture Notes in Chemistry book series (LNC, volume 12)


This conference is devoted to applications of permutation groups in chemistry and physics. Hearing of applications of group theory in sciences, our first reaction is to think of symmetry considerations, where the situation is as follows: a given system is symmetric with respect to a certain symmetry group, a subgroup, say, of the three-dimensional orthogonal group, and this invariance of the given system under symmetry operations can be used in order to attack the corresponding mathematical problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. L. Biggs/E. K. Lloyd/ R. J. Wilson: Graph Theory, 1736-1936. Oxford University Press, 1976.Google Scholar
  2. 2.
    Crum Brown: On the theory of isomeric compounds. Trans. Roy. Soc. Edinburgh 23 (1864), 707–719.Google Scholar
  3. 3.
    J. J. Sylvester: Chemistry and algebra. Nature 17 (1877/78), 284.CrossRefGoogle Scholar
  4. 4.
    A. Cayley: On the mathematical theory of isomers. Philosophical Magazine (4) 47 (1874), 444–446.Google Scholar
  5. 5.
    A. C. Lunn/ J. K. Senior: Isomerism and configuration. J. Phys. Chem. 33 (1929), 1027–1079.CrossRefGoogle Scholar
  6. 6.
    G. Pólya: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Berbindungen. Acta Math. 68 (1937), 145–254.CrossRefGoogle Scholar
  7. 7.
    F. Harary/E. Palmer: Graphical enumeration. Academic Press, 1973.Google Scholar
  8. 8.
    A. Kerber: On Graphs and the Enumeration, Part I. MATCH 1 (1975), 5–10.CrossRefGoogle Scholar
  9. 9.
    A. Kerber: On Graphs and their Enumeration, Part II. MATCH 2 (1976), 17–34.Google Scholar
  10. 10.
    A. Kerber/ W. Lehmann: On Graphs and their Enumeration, Part III. MATCH 3 (1977), 67–86.Google Scholar
  11. 11.
    A. Kerber: Representations of permutation groups I/II. Lecture Notes in Math., Vol 240 and Vol. 495, Springer Verlag 1971 and 1975.Google Scholar
  12. 12.
    W. Lehmann: Die Abzähltheorie von Redfield-Pólya-de Bruijn und die Darstellungstheorie endlicher Gruppen. Diplomarbeit, Geißen 1973.Google Scholar
  13. 13.
    W. Lehmann: Ein vereinheitlichender Ansatz für die Redfield-Pólya-de-Bruijnsche Abzähl théorie, Dissertation, Aachen, 1976.Google Scholar
  14. 14.
    J. H. Redfield: The theory of group reduced distributions, Amer. J. Math. 49 (1927), 433–455.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • A. Kerber
    • 1
  1. 1.Lehrstuhl D für MathematikRWTH AachenAachenGermany

Personalised recommendations