Advertisement

Numerical Methods for the Coupled Equations: A Survey

  • Franco Antonio Gianturco
Part of the Lecture Notes in Chemistry book series (LNC, volume 11)

Abstract

In the previous Chapters we indicated and discussed in some detail the theoretical models which have been worked out from first principles and employed in treating the various collisional processes that preside over the transfer of transitional and rotovibrational energies in simple diatomic gases. Also underlined was how the need to know many cross sections at several collision energies, and for increasingly more sophisticated systems, has in recent years spurred the development of dimensionality reduction schemes which could hopefully allow the actual computation of the required cross sections with the necessary level of accuracy but with a much less expensive computational effort.

Keywords

Collision Energy Couple Equation Asymptotic Form Linear Independence Asymptotic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Methods in Computational Physics, Vol. X (B. Alder, S. Fernbach and M. Rotenberg Ed.s, Academic Press. N.Y. 1971).Google Scholar
  2. [2]
    L. Hulthen, Ark. Mat. Astron. Fys., 35A, N. 25 (1948).Google Scholar
  3. [3]
    W. Köhn, Phys. Rev., 74, 1763 (1948).CrossRefGoogle Scholar
  4. [4]
    S. I. Rubinow, Phys. Rev., 98, 183 (1955).CrossRefGoogle Scholar
  5. [5]
    L. S. Rodberg and R. M. Thaler, Introduction to the Quantum Theory of Scattering (Academic Press, N.Y. 1967).Google Scholar
  6. [6]
    W. J. Cody and K. Smith, Argonne Nat. Lab. Rept., ANL-6121 (1960)Google Scholar
  7. [7]
    W. A. Lester Jr. and R. B. Bernstein, J. Chem. Phys., 48, 4896 (1968).CrossRefGoogle Scholar
  8. [8]
    A. F. Wagner and V. McKoy, J. Chem. Phys., 58 2604 (1973).CrossRefGoogle Scholar
  9. [9]
    R. De Vogelaere, Jour. Res. N. B. S. 54, 119 (1955).Google Scholar
  10. [10]
    L. Fox and D. F. Mayers, Computing Methods for Scientists and Eigineers (Clarendon Press. Oxford, 1968).Google Scholar
  11. [11]
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York 1968).Google Scholar
  12. [12]
    A. C. Allision, J.Comput. Physics, 6, 378 (1970).CrossRefGoogle Scholar
  13. [13]
    W. A. Lester Jr., Method Comp. Phys., 10, 211 (1971).Google Scholar
  14. [14]
    P. McGuire and D. A. Micha, Int. J. Quantum Chem., 6,111 (1972).CrossRefGoogle Scholar
  15. [15]
    J. M. Blatt, J. Comput. Physics, 1, 382 (1967).CrossRefGoogle Scholar
  16. [16]
    P. G. Burke and M. J. Seaton, Method. Comp. Phys., 10, 1 (1971).Google Scholar
  17. [17]
    L. L. Barnes et al., Phys. Rev., A137, 388 (1965).CrossRefGoogle Scholar
  18. [18]
    K. Smith et al., Phys. Rev. A147, 21 (1966).CrossRefGoogle Scholar
  19. [19]
    D. W. Norcross and M. J. seaton, J. Phys. B 6, 614 (1973).CrossRefGoogle Scholar
  20. [20]
    G. Bergeron, X. Chapuisat, J. M. Launay, Chem. Phys. Lett., 38, 349 (1976).CrossRefGoogle Scholar
  21. [21]
    L. Fox, The numerical solution of two-point boundary value problems in ordinary differential equations (Oxford Univ. Press, London 1957).Google Scholar
  22. [22]
    R. G. Gordon, J. Chem. Phys., 51., 14 (1969).CrossRefGoogle Scholar
  23. [23]
    R. G. Gordon, Meth. Comput. Phys., 10, 81 (1971).Google Scholar
  24. [24]
    R. G. Gordon, Program 187, Quantum Chemistry Program Exchange (QCPE) Indiana University, Bloomington, Ind. (U. S. A.).Google Scholar
  25. [25]
    M. U. Alexander, J. Comp. Phys., 20, 248 (1976).CrossRefGoogle Scholar
  26. [26]
    T. Y. Wu and T. Ohmura, Quantum theory of scattering (Prentice Hall Inc., Engle-wood Cliffs, N. J., 1962).Google Scholar
  27. [27]
    B. R. Johnson and D. Secrest, J. Hath. Phys., 7, 2187 (1966).CrossRefGoogle Scholar
  28. [28]
    B. R. Johnson and D. Secrest, J. Chem. Phys., 48, 4682 (1968).CrossRefGoogle Scholar
  29. [29]
    D. Secrest, Meth. Comp. Phys., 10, 243 (1971).Google Scholar
  30. [30]
    N. W. Sams and D. J. Kouri, J. Chem. Phys., 51, 4809 (1969).CrossRefGoogle Scholar
  31. [31]
    N. W. Sams and D. J. Kouri, J. Chem. Phys., 51, 4815 (1969).CrossRefGoogle Scholar
  32. [32]
    W. Eastes and D. Secrest, J. Chem. Phys., 56, 640 (1972).CrossRefGoogle Scholar
  33. [33]
    B. H. Choi and K. T. Tang, J. Chem. Phys., 63, 1775 (1975).CrossRefGoogle Scholar
  34. [34]
    E. P. Wigner, Phys. Rev., 70, 15 (1946).CrossRefGoogle Scholar
  35. [35]
    E. P. Wigner, Phys. Rev., 70, 606 (1946).CrossRefGoogle Scholar
  36. [36]
    P. G. Burke, A. Hibbert and W. P. Robb, J. Phys. B., 4, 153 (1971).CrossRefGoogle Scholar
  37. [37]
    P. G. Burke and W. O. Robb, Adv. At. Hol. Phys., 11 143 (1975).CrossRefGoogle Scholar
  38. [38]
    N. Chandra and F. M. Gianturco, Chem. Phys. Lett.Google Scholar
  39. [39]
    P. G. Burke, I. Mackey and I. Shimamura, J. Phys. B, 10, 2497 (1977).CrossRefGoogle Scholar
  40. [40]
    B. I. Schneider, Chem. Phys. Lett., 31, 237 (1975).CrossRefGoogle Scholar
  41. [41]
    E. P. Wigner and L. Eisenbud, Phys. Rev., 72, 29 (1947).CrossRefGoogle Scholar
  42. [42]
    J. C. Light and R. B. Walker, J. Chem. Phys., 65, 4272 (1976).CrossRefGoogle Scholar
  43. [43]
    B. I. Schneider and R. B. Walker, J. Chem. Phys., (1979).Google Scholar
  44. [44]
    P. G. Burke, D. D. McVicar and H. M. Shey, Proc. Phys. Soc, 83, 397 (1964).CrossRefGoogle Scholar
  45. [45]
    M. Le Dorneouf and Voky Lan, J. Phys. B, 10, L35 (1977).CrossRefGoogle Scholar
  46. [46]
    I. Calogero, Variable Phase approach to potential scattering (Academic Press, N. Y. 1967).Google Scholar
  47. [47]
    M. Le Dorneouf and Vo ky Lan, private communication (1978).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Franco Antonio Gianturco
    • 1
    • 2
  1. 1.Institute of Physical ChemistryThe University of BariBariItaly
  2. 2.Quantum Chemistry Laboratory(L.C.Q.E.M), C.N.R.PisaItaly

Personalised recommendations