Skip to main content

Cactus-Breeding Drosophila — A System for the Measurement of Natural Selection

  • Conference paper
Book cover Measuring Selection in Natural Populations

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 19))

Abstract

“Only by studying the ecology of natural and artificial populations can we come to understand the forces or factors that act on gene frequencies within them” (Clarke, 1975). The need for the joint consideration of population ecology and population genetics is not a new idea, but as Clarke said, the point is “so obvious and elementary that….. it has often been overlooked”. In the study of evolution, we would hope to understand, at the intra-specific level, the factors determining both the numbers of organisms and the kinds (genotypes) of organisms and the nature of any interactions between numbers and kinds (Birch, 1960). At the community level, we ask similar questions, but have to include consideration of higher-order interactions between numbers and kinds of different species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, W.W. 1971. Genetic equilibrium and population growth under density-regulated selection. Amer. Natur. 105: 489–498.

    Article  Google Scholar 

  • Barker, J.S.F., and Mulley, J.C. 1976. Isozyme variation in natural populations of Drosophila buzzatii. Evolution 30: 213–233.

    CAS  Google Scholar 

  • Birch, L.C. 1960. The genetic factor in population ecology. Amer. Natur. 94: 5–24.

    Article  Google Scholar 

  • Bryant, E. 1914a. On the adaptive significance of enzyme polymorphisms in relation to environmental variability. Amer. Natur. 108: 1–19.

    Google Scholar 

  • Bryant, E. 1914b. An addendum on the statistical relationship between enzyme polymorphisms and environmental variability. Amer. Natur. 108: 698–701.

    Google Scholar 

  • Carson, H.L., and Wassermann, M. 1965. A widespread chromosomal polymorphism in a widespread species, Drosophila buzzatii. Amer. Natur. 99: 111–115.

    Google Scholar 

  • Charlesworth, B. 1973. Selection in populations with overlapping generations. V. Natural selection and life histories. Amer. Natur. 107: 303–311.

    Article  Google Scholar 

  • Christiansen, F.B., and Fenchel, T.M. 1977. Theories of Populations in Biological Communities. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Christiansen, F.B., Frydenberg, O., Hjorth, J.P., and Simonsen, V. 1976. Genetics of Zoarces populations IX. Geographic variation at the three phosphoglucomutase loci. Hereditas 83: 245–256.

    Article  Google Scholar 

  • Clarke, B. 1973. Mutation and population size. Heredity 31: 367–379.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, B. 1975. The contribution of ecological genetics to evolutionary theory: Detecting the direct effects of natural selection on particular polymorphic loci. Genetics 79: 101–113.

    PubMed  Google Scholar 

  • Cohen, D. 1967. Optimizing reproduction in a randomly varying environment. J. Theoret. Biol. 16: 1–14.

    Article  CAS  Google Scholar 

  • Fisher, R.A., and Ford, E.B. 1947. The spread of a gene in natural conditions in a colony of the moth Panaxia dominula L. Heredity 1: 143–174.

    Article  Google Scholar 

  • Ford, E.B., and Sheppard, P.M. 1969. The medionigra polymorphism of Panaxia dominula. Heredity 24: 561–569.

    Article  Google Scholar 

  • Gershenson, S. 1945. Evolutionary studies on the distribution and dynamics of melanism in the hamster (Cricetus cricetus L.). I. Distribution of black hamsters in the Ukrainian and Bashkirian Soviet Socialist Republics (U.S.S.R.). Genetics 30: 207–232.

    PubMed  CAS  Google Scholar 

  • Johnson, F.M., Richardson, R.H., and Kambyssellis, M.P. 1968. Isozyme variability in species of the genus Drosophila. III. Qualitative comparison of the esterases of of D. aldrichi and D. mulleri. Biochem. Genet. 1: 239–247.

    Article  CAS  Google Scholar 

  • Johnson, F.M. and Schaffer, H.E. 1973. Isozyme variability in species of the genus Drosophila. VII. Genotype-environment relationships in populations of D. melanogaster from the eastern United States. Biochem. Genet. 10: 149–163.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, F.M., Schaffer, H.E., Gillespy, J.E., and Rockwood, E.S. 1969. Isozyme genotype-environment relationships in natural populations of the Harvester Ant, Pogonomyrmex barbatus, from Texas. Biochem. Genet. 3: 429–450.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J.S., and Heed, W.B. 1975. Dispersal of Drosophila: The effect of baiting on the behaviour and distribution of natural populations. Amer. Natur. 109: 209–216.

    Google Scholar 

  • Kieg, G., and McAlpine, J.R. 1969. Austclimdata. A magnetic tape with estimated mean weekly climatic data for the Australian continent. C.S.I.R.O. Division of Land Research, Tech. Memo. 69/14.

    Google Scholar 

  • King, C.E., and Anderson, W.W. 1971. Age-specific selection. II. The interaction between r and K during population growth. Amer. Natur. 105: 137–156.

    Article  Google Scholar 

  • Kojima, K., Smouse, P., Yang, S., Nair, P.S., and Brncic, D. 1972. Isozyme frequency patterns in Drosophila pavani associated with geographical and seasonal variables. Genetics 72: 721–731.

    PubMed  CAS  Google Scholar 

  • Krebs, C.J., Gaines, M.S., Keller, B.L., Myers, J.H., and Tamarin, R.H. 1973. Population cycles in small rodents. Science 179: 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Levins, R. 1968. Toward an evolutionary theory of the niche. In: E.T. Drake (ed.): Evolution and Environment, pp. 325–340. Yale University Press, New Haven, Conn.

    Google Scholar 

  • Lewontin, R.C. 1965. Selection for colonizing ability. In: H.G. Baker and G.L. Stebbins (eds.): The Genetics of Colonizing Species, pp. 77–94. Academic Press, New York.

    Google Scholar 

  • McKechnie, S.W., Ehrlich, P.R., and White, R.R. 1975. Population genetics of Eu-phydryas butterflies. I. Genetic variation and the neutrality hypothesis. Genetics 81: 571–594.

    PubMed  CAS  Google Scholar 

  • Mann, J. 1970. Cacti naturalised in Australia and their control. S.G. Reid, Government Printer, Brisbane.

    Google Scholar 

  • Mather, W.B. 1957. Genetic relationships of four Drosophila species from Australia. Genetics of Drosophila, Univ. Texas Publ. 5721: 221–225.

    Google Scholar 

  • Mertz, D.B. 1971. The mathematical demography of the California Condor population. Amer. Natur. 105: 437–453.

    Article  Google Scholar 

  • Mulley, J.C., and Barker, J.S.F. 1976. The occurrence and distribution of Drosophila aldrichi in Australia. Drosophila Inf. Serv. 52: (in press).

    Google Scholar 

  • Nevo, E., and Bar, Z. 1976. Natural selection of genetic polymorphisms along climatic gradients. In: S. Karlin and E. Nevo (eds.): Population Genetics and Ecology. pp. 159–184. Academic Press, New York.

    Google Scholar 

  • Pianka, E.R. 1974. Evolutionary Ecology. Harper & Row, New York.

    Google Scholar 

  • Podger, R.N., and Barker, J.S.F. 1966. Collection of large numbers of larvae of homogeneous age and development. Drosophila Inf. Serv. 41: 195.

    Google Scholar 

  • Richardson, R.H., Richardson, M.E., and Smouse, P.E. 1975. Evolution of electrophoretic mobility in the Drosophila mulleri complex. In: C.L. Markert (ed.): Isozymes IV. Genetics and Evolution, pp. 533–545. Academic Press, New York.

    Google Scholar 

  • Rockwood-Sluss, E.S., Johnston, J.S., and Heed, W.B. 1973. Allozyme genotype-environment relationships. I. Variation in natural populations of Drosophila pachea. Genetics 73: 135–146.

    CAS  Google Scholar 

  • Roughgarden, J. 1971. Density-dependent natural selection. Ecology 52: 453–468.

    Article  Google Scholar 

  • Roughgarden, J. 1972. Evolution of niche width. Amer. Natur. 106: 683–718.

    Article  Google Scholar 

  • Schaffer, H.E., and Johnson, F.M. 1974. Isozyme allelic frequencies related to selection and gene-flow hypotheses. Genetics 77: 163–168.

    PubMed  CAS  Google Scholar 

  • Smith, M.H., Garten, C.T., Jr., and Ramsey, P.R. 1975. Genic heterozygosity and population dynamics in small mammals. In: C.L. Markert (ed.): Isozymes IV. Genetics and Evolution, pp. 85–102. Academic Press, New York.

    Google Scholar 

  • Taylor, C.E., and Mitton, J.B. 1974. Multivariate analysis of genetic variation. Genetics 76: 575–585.

    PubMed  CAS  Google Scholar 

  • Tomaszewski, E.K., Schaffer, H.E., and Johnson, F.M. 1973. Isozyme genotype-environment associations in natural populations of the Harvester Ant, Pogonomyrmex badius. Genetics 75: 405–421.

    CAS  Google Scholar 

  • Wasserman, M. 1962. Cytological studies of the repleta group of the genus Drosophilaz The mulleri subgroup. Studies in Genetics, II, Univ. Texas Publ. 6205: 85–117.

    Google Scholar 

  • Zouros, E. 1973. Genic differentiation associated with the early stages of speciation in the mulleri subgroup of Drosophila. Evolution 27: 601–621.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barker, J.S.F. (1977). Cactus-Breeding Drosophila — A System for the Measurement of Natural Selection. In: Christiansen, F.B., Fenchel, T.M. (eds) Measuring Selection in Natural Populations. Lecture Notes in Biomathematics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93071-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93071-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08435-8

  • Online ISBN: 978-3-642-93071-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics