Skip to main content
  • 114 Accesses

Zusammenfassung

Die räumliche und zeitliche Kohärenz machen zusammen mit der hohen Leuchtdichte den Laser zu einem außerordentlich wertvollen Instrument für Analyse und Photochemie. Die Zahl der Methoden, die die elastische und inelastische Streuung sowie die Absorption ausnützen, ist deshalb bereits sehr groß. Zum Teil befinden sie sich noch im Entwicklungsstadium, einige sind bereits fester Bestandteil der experimentellen Technik geworden. Der Abschnitt 8 soll einen möglichst umfassenden Überblick über die heute bekannten Verfahren geben, weshalb aus Platzmangel auf die Behandlung vieler Einzelheiten verzichtet werden muß. Die zitierte Literatur ist daher auch mit dem Ziel ausgewählt, diesen Mangel möglichst auszugleichen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Van de Hulst, H. C.: Light scattering by small particles. New York: McGraw Hill 1941.

    Google Scholar 

  2. Giese, R. H.; de Bary, E.; Bullrich, K.; Vinnemann, C. D.: Tabellen der Streufunktionen ί1, ί2 und des Streuquerschnitts K(m) homogener Kügelchen nach der Miesehen Theorie. Abhdlg. Dt. Akad. Wiss., Klasse Mathem., Phys. u. Techn., Bd. VI, Berlin 1961.

    Google Scholar 

  3. Gebhardt, J.; Bol, J.; Heinze, W.; Letschert, W.: Ein Teilchengrößenspektrometer für Aerosole unter Ausnutzung der Kleinwinkelstreuung der Teilchen in einem Laserstrahl. Staub 30 (1970) 238–245.

    Google Scholar 

  4. Bol, J.; Gebhardt, W.; Heinze, W.; Petersen, W.D.; Wurzbacher, G.: Ein Streulicht-Teilchengrößenspektrometer für submikroskopische Aerosole hoher Konzentration. Staub 30 (1970) 475–479.

    Google Scholar 

  5. Blau Jr., H. H.; Cohen, M. L.; Lapson, L. B.; v. Thuma, P.; Ryan, R. T.; Watson, D.: A prototype cloud physics laser nephelometer. Appl. Opt. 9 (1970) 1798–1803.

    Article  ADS  Google Scholar 

  6. Graratt, C. C.: Light-scattering with laser sizes particulate matter. Opt. Spectra, Jan. 1973, 35.

    Google Scholar 

  7. Uthe, E. E.: Lidar observations of particulate distributions over extended areas. 4. Laser Radar Conf., Tucson, Ariz., 1972.

    Google Scholar 

  8. Borchardt, H.; Rössler, J.: Erfahrungen und Überlegungen mit LIDAR am Meterologischen Observatorium Aachen. Ber. d. D. Wetterdienst. 16 (1971) Nr. 125, S. 1–34.

    Google Scholar 

  9. Cook, C. S.; Bethke, G. W.; Conner, W. D.: Remote measurement of smoke plume transmittance using lidar. Appl. Opt. 11 (1972) 1742–1748.

    Article  ADS  Google Scholar 

  10. Phelps, J. P.: Particle size determination using a laser light transmission technique. NTIS US-Dep. of Commerce AD 832–909, März 1968.

    Google Scholar 

  11. Schuster, B. G.; Knollenberg, R.: Detection and sizing of small particles in an open cavity gas laser. Appl. Opt. 11 (1972) 1515–1520.

    Article  ADS  Google Scholar 

  12. Brewer, R. G.: Nonlinear spectroscopy. Science 178 (1972) 247–255.

    Article  ADS  Google Scholar 

  13. Hinkley, E. D.: Tunable infrared lasers and their applications to air pollution measurements. J. Opto-Electron. 4 (1972) 69–86.

    Article  Google Scholar 

  14. Patel, C. K. N.; Shaw, E. D.: Tunable stimulated Raman scattering from mobile carriers in semiconductors. Phys. Rev. B 3 (1971) 1279–1295.

    Article  ADS  Google Scholar 

  15. Gerritsen, H. J.: Tuned laser spectroscopy of organic vapors. In “Physics of Quantum Electronics”, S. 581–590, hrsg. v. P. L. Kelley, B. Lax u. P. E. Tannenwald. New York: McGraw Hill 1966.

    Google Scholar 

  16. Hieftje, G. M.: Signal-to-noise enhancement through instrumental techniques. Analyt. Chem. 44 (1972) 69A–78A.

    Article  Google Scholar 

  17. Hinkley, E. P.; Kelley, P. L.: Detection of air pollutants with tunable diode lasers. Science 171 (1971) 635–639.

    Article  ADS  Google Scholar 

  18. Patel, C. K. N., Shaw, R. J., Kerl, R. J.: Tunable spin-flip laser and infrared spectroscopy. Phys. Rev. Letters 25 (1970) 8–11.

    Article  ADS  Google Scholar 

  19. Kreuzer, L. B., Patel, C. K. N.: Nitric oxide air pollution detection by opto-acoustic spectroscopy. Science 173 (1971) 45–47.

    Article  ADS  Google Scholar 

  20. Kildal, H., Byer, R. L.: Comparison of laser methods for the remote detection of atmospheric pollutants. Proc. IEEE 59 (1971) 1644–1663.

    Article  Google Scholar 

  21. Hinkley, E. D.: Tunable IR lasers and their application to air pollution measurements. Opto-Electron. 4 (1972) 69–86.

    Article  Google Scholar 

  22. Snowman, R. L., Gillmeister, R. J.: Infrared laser system for extended area monitoring of air pollution. AIAA Paper Nr. 71–1059, Proc. of the Joint Conf. on Sensing of Env. Poll., Palo Alto, Nov. 1971.

    Google Scholar 

  23. Barger, R. L., Hall, J. L.: Pressure shift and broadening of methane-line at 3.39 μm studied by laser saturated molecular absorption. Phys. Rev. Letters 22 (1969) 4–7.

    Article  ADS  Google Scholar 

  24. Rabinovitz, P.; Keller, R.; LaTourette, J. T.: Lamb-dip spectroscopy applied to SF6. Appl. Phys. Letters 14 (1969) 376–378. Basov, N. G.; Kompanets, I. M.; Kompanets, O. N.; Letokhov, V. S.; Nikitin, Y. V.: Narrow resonances in the saturation of absorption of SP6 by CO2-laser emission. J. Exp. Theoret. Phys. Letters 9 (1969) 345–347. Goldberg, M. W.; Yusek, R.: High resolution inverted Lamb-dip spectroscopy on SF6. Appl. Phys. Letters 17 (1970) 349.

    Google Scholar 

  25. Smith, P. W.; Hänsch, T. W.: Cross-relaxation effects in the saturation of the 6328-Å neon line. Phys. Rev. Letters 26 (1971) 740–743.

    Article  ADS  Google Scholar 

  26. Hänsch, T. W.; Levenson, M. D.; Shawlow, A. L.: Complete hyperfine structure of a molecular iodine line. Phys. Rev. Letters 26 (1971) 946–949.

    Article  ADS  Google Scholar 

  27. Hänsch, T. W.; Shahin, I. S.; Shawlow, A. L.: High-resolution saturation spectroscopy of the sodium D lines with a pulsed tunable dye laser. Phys. Rev. Letters 27 (1971) 707–710.

    Article  ADS  Google Scholar 

  28. Eraser, L. M.; Winefordner, J. D.: Laser-excited atomic fluorescence flame spectroscopy as an analytical method. Analyt. Chem. 44 (1972) 1444–1451.

    Article  Google Scholar 

  29. Bowman, M. R.; Gibson, A. J.; Sandford, M. C. W.: Atmospheric sodium measured by a tuned laser radar. Nature 21 (1969) 456–457.

    Article  ADS  Google Scholar 

  30. Duguay, M. A.; Hansen, J. W.: Direct measurement of picosecond lifetimes. Opt. Commun. 1 (1969/70) 254–256.

    Article  ADS  Google Scholar 

  31. Moore, C. B.; Wood, R. E.; Hu, B.; Yardley, J. T.: Vibrational energy transfer in CO2-lasers. J. Chem. Phys. 46 (1967) 4222–4231.

    Article  ADS  Google Scholar 

  32. Yardley, J. T.; Moore, C. B.: Vibrational energy transfer in methane. J. Chem. Phys. 49 (1968) 1111–1125.

    Article  ADS  Google Scholar 

  33. Yardley, J. T.; Moore, C. B.: Intramolecular V → V energy transfer in carbon dioxide. J. Chem. Phys. 46 (1967) 4491–4495.

    Article  ADS  Google Scholar 

  34. Heller, D. P.; Moore, C. B.: Relaxation of CO2 by collisions with H2O, D2OH and HDO. J. Chem. Phys. 52 (1970) 1005–1006.

    Article  ADS  Google Scholar 

  35. Brandmüller, J.; Moser, H.: Einführung in die Raman-Spektroskopie. Darmstadt: Steinkopff 1962.

    Google Scholar 

  36. Herzberg, G.: Molecular spectra and molecular structure. Bd. EL Infrared and Raman spectra. Princeton: D. van Nostrand 1964.

    Google Scholar 

  37. Schrötter, H. W.: Ramanspektroskopie mit Lasern. II. Teil: Nichtlineare Effekte. Naturwiss. 54 (1967) 607–612.

    Article  ADS  Google Scholar 

  38. Barrett, J. J.: Laser-excited Raman scattering in ultra-small gas samples. Ann. Meeting of the Opt. Soc. Amer., Okt. 1966. J. Opt. Soc. Amer. 56 (1966) 1423.

    Google Scholar 

  39. Yanney, P. P.: Reduction of fluorescence background in Raman spectra by the pulsed Raman-technique. J. Opt. Soc. Amer. 62 (1972) 1297–1303.

    Article  ADS  Google Scholar 

  40. Leite, R. C. C.; Porto, S. P. S.: Continuous photoelectric recording of the Raman effect in liquids excited by the HeNe-red-laser. J. Opt. Soc. Amer. 54 (1964) 981–983.

    Article  ADS  Google Scholar 

  41. Brandmüller, J.: Ramanspektroskopie mit Lasern. I. Teil: Linearer Raman-effekt. Naturwiss. 54 (1967) 293–297.

    Article  ADS  Google Scholar 

  42. Hester, R. E.: Raman spectrometry. Analyt. Chem. 44 (1972) 490 R-497 R.

    Google Scholar 

  43. Hirschfeld, T.; Schildkraut, E. R.; Tannenbaum, H.; Tannenbaum, D.: Remote spectroscopic analysis of ppm-level air pollutants by Raman spectroscopy. Appl. Phys. Letters 22 (1973) 38–40.

    Article  ADS  Google Scholar 

  44. Kobayashi, T. H.; Inaba, H.: Spectroscopic detection of SO2 and CO2 molecules in polluted atmosphere by laser Raman radar technique. Appl. Phys. Letters 17 (1970) 139–141.

    Article  ADS  Google Scholar 

  45. Derr, Y. E.; Little, C. G.: A comparison of remote sensing of the clear atmosphere by optical radio and acoustic radar techniques. Appl. Opt. 9 (1970) 1976–1992.

    Article  ADS  Google Scholar 

  46. Chany, R. K.; Pouche, D. G.: Gains in detecting pollution. Laser-Focus, Dez. 1972, 43–45.

    Google Scholar 

  47. Moenke, H.; Moenke-Blankenburg: Einführung in die Laser-Mikrospektral- analyse. 2. Aufl. Leipzig: Akad. Yerlagsges. Geest u. Portig 1968.

    Google Scholar 

  48. Schroth, H.: Quantitative Laser-Mikrospektralanalyse verschiedener Materialien im ungesteuerten und gütegesteuerten Laserbetrieb. Z. Anal. Chem. 261 (1972) 21–29.

    Article  Google Scholar 

  49. Winters, H. F.; Kay, E.: Gas analysis in films by laser-induced flash evaporation followed by mass spectroscopy. J. Appl. Phys. 43 (1972) 789–793.

    Article  ADS  Google Scholar 

  50. McGrue, C. H.: Isotopic analysis of rare gases with a laser microprobe. Science 157 (1967) 1555–1556.

    Article  ADS  Google Scholar 

  51. Basov, N. G.; Markin, E. P.; Oraevskij, A. N.; Pankratov, A. V.; Skadkov, A. N.: Stimulation of chemical processes by infrared laser radiation. J. Exp. Theoret. Phys. Letters 14 (1971) 165–167.

    ADS  Google Scholar 

  52. Mayer, S. W.; Kwok, M. A.; Gross, R. W. F.; Spencer, D. J.: Isotope separation with the cw hydrogen fluoride laser. Appl. Phys. Letters 17 (1970) 516–519.

    Article  ADS  Google Scholar 

  53. Moore, C. B.: Photochemistry and isotope separation in the ultraviolett: formaldehyde. Bull. Amer. Phys. Soc. 18 (1973) 11.

    Google Scholar 

  54. Ambartzumian, R. Y.; Letokhov, Y. S.: Selective two-step photoionization of atoms and photodissociation of molecules by laser radiation. Appl. Opt. 11 (1972) 354–358.

    Article  ADS  Google Scholar 

  55. Verfahren und Vorrichtung zur Trennung von Isotopen. Offenlegungsschrift 2120401.

    Google Scholar 

  56. Ambartzumian, R. V.; Lethokov, V. S.; Makarov, G. N.; Puretskij, A.A.: Two-step photodissociation of ammonia-molecules excited by laser radiation. J. Exp. Theoret. Phys. Letters 15 (1972) 501–503.

    ADS  Google Scholar 

  57. Norrish, R. G. W.; Porter, G.: Chemical reactions produced by very high light intensities. Nature 164 (1949) 658.

    Article  ADS  Google Scholar 

  58. Porter, G.; Topp, M. R.: Nanosecond flash photolysis. Proc. Roy. Soc. London A 135 (1970) 163–184.

    ADS  Google Scholar 

  59. Bush, G. E.; Jones, R. P.; Rentzepis, P. M.: Picosecond spectroscopy using a picosecond continuum. Chem. Phys. Letters 18 (1973) 178–185.

    Article  ADS  Google Scholar 

  60. Novak, J. R.; Windsor, M. W.: Laser photolysis and spectroscopy: a new technique for the study of rapid reactions in the nanosecond time range. Proc. Roy. Soc. London A 308 (1968) 95–110.

    Article  ADS  Google Scholar 

  61. Wiswall, C. E.; Ames, D. P.; Meme, T. J.: Chemical laser device bibliography. IEEE J. Quant. Electron. QE-9 (1973) 181–188.

    Google Scholar 

  62. Basov, N. G.; Igoshin, V. I.; Markin, Y. P.; Oraevskij, A. N.: The dynamics of chemical lasers. Kwantovaya elektronika 1971, Nr. 2, S. 3–24.

    Google Scholar 

  63. Kompa, K. L.; Wanner, J.: Study of some fluorine atom reactions using a chemical laser method. Chem. Phys. Letters 12 (1972) 560–563.

    Article  ADS  Google Scholar 

  64. Ambartsumyan, R. V.; Letokhov, V. S.: Separation of nitrogen with a laser. J. Exp. Theoret. Phys. Letters 17 (1973) 63–65.

    ADS  Google Scholar 

  65. Shimoda, K.: Limits of sensitivity of laser spectrometers. Appl. Phys. 1 (1973) 77–86.

    Article  ADS  Google Scholar 

  66. Ahmed, S. A.: Molecular air pollution monitoring by dye laser measurement of differential absorption of atmospheric elastic backscatter. Appl. Opt. 12 (1973) 901–903.

    Article  ADS  Google Scholar 

  67. Byer, R. L.; Garbuny, M.: Pollutant detection by absorption using Mie scattering and topographic targets as retroreflectors. Appl. Opt. 12 (1973) 1494 bis 1505.

    Google Scholar 

  68. Rothe, K. W.; Brinkmann, U.; Walther, H.: Application of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption. Appl. Phys. 3 (1974) 115–119.

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag. Berlin/Heidelberg

About this chapter

Cite this chapter

Klement, E. (1975). Analyse und Photochemie. In: Technische Anwendungen des Lasers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93030-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93030-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-93031-7

  • Online ISBN: 978-3-642-93030-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics