Advertisement

Zusammenfassung

Unter dem Begriff der Phosphatide werden die phosphorhaltigen Lipoide1 verstanden. Dazu gehören die Glycerinphosphatide und das Sphingomyelin. Da diese beiden Arten von Phosphatiden sich in ihrer Struktur, in ihren physikalischen Eigenschaften und in ihrer Lokalisation im Organismus, vielleicht auch in der biologischen Bedeutung deutlich voneinander unterscheiden, sollen sie hier getrennt besprochen werden. Die dem Sphingomyelin verwandten Stoffe, die Cerebroside und schließlich die Ganglioside werden in der Gruppe der Sphingolipoide zusammengefaßt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ansell, G. B., and R. M. C. Dawson: Ethanolamine-O-phosphoric acid in rat brain. Biochem. J. 50, 241 (1951).PubMedGoogle Scholar
  2. — and J. M. Norman: Observations on the acetalphospholipids of brain tissue. J. Neurochem. 1, 32 (1956).PubMedCrossRefGoogle Scholar
  3. Artom, C.: Lipid metabolism. Ann. Rev. Biochem. 22, 211 (1953).PubMedCrossRefGoogle Scholar
  4. — Effect of choline administration on the oxidation of fatty acids by extrahepatic tissues. J. biol. Chem. 213, 681 (1955).PubMedGoogle Scholar
  5. — and M. A. Swanson: Incorporation of labeled phosphate into the lipides of liver slices. J. biol. Chem. 193, 473 (1951).PubMedGoogle Scholar
  6. Awapara, J., A. J. Landua and R. Fuerst: Free aminoethylphosphoric ester in rat organs and human tumors. J. biol. Chem. 183, 545 (1950).Google Scholar
  7. Baahn, J. van, and S. Gurin: Cofactor requirements for lipogenesis. J. biol. Chem. 205, 303 (1953).Google Scholar
  8. Baer, E., and M. Kates: Migration during hydrolysis of esters of glycerophosphoric acid. I. The chemical hydrolysis of L-α-glycerylphosphorylcholine. J. biol. Chem. 175, 79 (1948).PubMedGoogle Scholar
  9. — Synthesis of enantiomeric α-lecithins. J. Amer. chem. Soc. 72, 942 (1950).CrossRefGoogle Scholar
  10. — and J. Maurukas: (1) Phosphatidyl serine. J. biol. Chem. 212, 25 (1955).PubMedGoogle Scholar
  11. — (2) The diazometholysis of glycerolphosphatides. A novel method of determining the configuration of phosphatidylserines and cephalines. J. biol. Chem. 212, 39 (1955).PubMedGoogle Scholar
  12. H. C. Stancer and I. A. Korman: Migration during hydrolysis of esters of glycerophosphoric acid. III. Cephalin and glycerylphosphorylethanolamine. J. biol. Chem. 200, 251 (1953).PubMedGoogle Scholar
  13. Bailly, M. C.: Sur un mode simple et presque quantitatif de passage des β-aux α-glycerophosphates. C. R. Acad. Sci. (Paris) 206, 1902 (1938).Google Scholar
  14. — (1) Sur la réversibilité de la transposition glycérophosphorique. C. R. Acad. Sci. (Paris) 208, 443 (1939).Google Scholar
  15. — (2) Sur l’hydrolyse des monoesters α-et β-glycérophosphoriques. C. R. Acad. Sci. (Paris) 208, 1820 (1939).Google Scholar
  16. Baumann, A.: Über den stickstoffhaltigen Bestandteil des Kephalins. Biochem. Z. 54, 30 (1913).Google Scholar
  17. Berry, J. F., and W. C. Mcmurray: Aerobic and anaerobic P32 labelling of phospholipids and adenosine phosphates in hypotonic homogenates of rat brain. Canad.J. Biochem. 35, 799 (1957).PubMedGoogle Scholar
  18. — and E. Stotz: Rôle of phosphorylcholine in acetylcholine synthesis. J. biol. Chem. 218, 871 (1956).PubMedGoogle Scholar
  19. Beveridge, J. M. R.: The function of phospholipids. Canad. J. Biochem. 34, 361 (1956).PubMedCrossRefGoogle Scholar
  20. Blietz, R. J.: Über die Struktur der Aldehyde liefernden Seitenketten im Plasmalogen. Hoppe-Seylers Z. physiol. Chem. 310, 120 (1958).PubMedCrossRefGoogle Scholar
  21. Blix, G.: Zur Kenntnis der schwefelhaltigen Lipoidstoffe des Gehirns. Über Cerebronschwefel-säure. Hoppe-Seylers Z. physiol. Chem. 219, 82 (1933).CrossRefGoogle Scholar
  22. Blix, G., E. Lindberg, L. Odin and I. Werner: Studies on sialic acids. Acta Soc. Med. upsalien. 61, 1 (1956).Google Scholar
  23. L. Svennerholm and I. Werner: Chondrosamine as a component of gangliosides and of submaxillary mucin. Acta chem. scand. 4, 717 (1950).CrossRefGoogle Scholar
  24. — The isolation of Chondrosamine from gangliosides and from submaxillary mucin. Acta chem. scand. 6, 358 (1952).CrossRefGoogle Scholar
  25. Blix, F. G., A. Gottschalk and E. Klenk: Proposed nomenclature in the field of neuraminic and sialic acid. Nature (Lond.) 179, 1088 (1957).CrossRefGoogle Scholar
  26. Bloom, B., I. L. Chaikoff, W. O. Reinhardt and W. G. Dauben: Participation of phospho-lipides in lymphatic transport of adsorbed fatty acids. J. biol. Chem. 189, 251 (1951).Google Scholar
  27. Bogoch, S.: Studies on the structure of brain ganglioside. Biochem. J. 68, 319 (1958).PubMedGoogle Scholar
  28. Borkenhagen, L. F., and E. P. Kennedy: The enzymatic synthesis of cytidine diphosphate choline. J. biol. Chem. 227, 951 (1957).PubMedGoogle Scholar
  29. Brady, R. O., J. V. Formica and G. J. Koval: The enzymatic synthesis of sphingosine. II. Further studies on the mechanism of the reaction. J. biol. Chem. 233, 1072 (1958).PubMedGoogle Scholar
  30. — and G. J. Koval: Biosynthesis of sphingosine in vitro. J. Amer. chem. Soc. 79, 2648 (1957).CrossRefGoogle Scholar
  31. — The enzymatic synthesis of sphingosine. J. biol. Chem. 233, 26 (1958).PubMedGoogle Scholar
  32. Brown, H. T., and G. H. Morris: Note on the identity of cerebrose and galactose. J. chem. Soc. 57, 57 (1890).CrossRefGoogle Scholar
  33. Bublitz, C., and E. P. Kennedy: Synthesis of phosphatides in isolated mitochondria. III. The enzymatic phosphorylation of glycerol. J. biol. Chem. 211, 951 (1954).PubMedGoogle Scholar
  34. Burton, R. M., M. A. Sodd and R. O. Brady: (1) The incorporation of galactose into galacto-lipides. J. biol. Chem. 233, 1053 (1958).PubMedGoogle Scholar
  35. — (2) Studies on the biosynthesis of galactolipids. Neurology 8, 84 (1958).PubMedCrossRefGoogle Scholar
  36. Campbell, P. N., D. H. Simmonds and T. S. Work: The occurrence of glycerylphosphor-ylethanolamine in extracts of liver and yeast. Biochem. J. 49, Proc, XVI (1951).Google Scholar
  37. — and T. S. Work: Fractionation of the nitrogenous water soluble constituents of liver. 1. The isolation of glycerylphosphorylethanolamine and of taurine. Biochem. J. 50, 449 (1952).PubMedGoogle Scholar
  38. Campbell, R., and W. H. Kosterlitz: The effects of dietary protein, fat and choline on the composition of the liver cell and the turnover of phospholipin and proteinbound phosphorus. Biochim. biophys. Acta 8, 664 (1952).PubMedCrossRefGoogle Scholar
  39. Carter, H. E., and Y. Fujino: Biochemistry of the sphingolipides. IX. Configuration of cerebrosides. J. biol. Chem. 221, 879 (1956).PubMedGoogle Scholar
  40. D S. Galanos and Y. Fujino: Chemistry of the sphingolipides. Canad. J. Biochem. 34, 320 (1956).PubMedCrossRefGoogle Scholar
  41. F. J. Glick, W. P. Norris and G. E. Phillips: The structure of sphingosine. J. biol. Chem 142, 449 (1942).Google Scholar
  42. — (2) Biochemistry of the sphingolipides. III. Structure of sphingosine. J. biol. Chem. 170, 285 (1947).Google Scholar
  43. — and C. G. Humiston: Biochemistry of the sphingolipides. V. The structure of sphingine. J. biol. Chem. 191, 727 (1951).PubMedGoogle Scholar
  44. — and W. P. Norris: Isolation of dihydrosphingosine from brain and spinal cord. J. biol. Chem. 145, 709 (1942).Google Scholar
  45. F. J. Glick, G. E. Phillips and R. Harris: (1) Biochemistry of the sphingolipides. II. Isolation of dihydrosphingosine from the cerebroside fractions of beef brain and spinal cord. J. biol. Chem. 170, 269 (1947).Google Scholar
  46. Celmer, W. D., and H. E. Carter: Chemistry of phosphatides and cerebrosides. Physiol. Rev. 32, 167 (1952).PubMedGoogle Scholar
  47. Chaikoff, I. L., and C. Entenman: Lipid metabolism. Ann. Rev. Biochem. 17, 253 (1948).PubMedCrossRefGoogle Scholar
  48. Channon, H. J., and A. C. Chibnall: The ether soluble substances of cabbage leaf cytoplasm. IV. Further observations on diglyceride phophoric acid. Biochem. J. 21, 1112 (1927).PubMedGoogle Scholar
  49. Chargaff, E.: Note on the mechanism of conversion of β-glycerophosphoric acid into the α-form. J. biol. Chem. 144, 455 (1942).Google Scholar
  50. — and S. S. Cohen: On lysophosphatides. J. biol. Chem. 129, 619 (1939).Google Scholar
  51. — and A. S. Keston: The metabolism of aminoethylphosphoric acid, followed by means of radioactive phosphorus isotope. J. biol. Chem. 134, 515 (1940).Google Scholar
  52. Chatagnon, C., et P. Chatagnon: Propriétés chimiques du strandin de Folch. Strandin et acide neuraminique. Bull. Soc. Chim. biol. (Paris) 36, 373 (1954).Google Scholar
  53. Chibnall, A. C., and H. J. Channon: (1) The ether-soluble substances of cabbage leaf cytoplasm. I. Preparation and general characters. Biochem. J. 21, 225 (1927).PubMedGoogle Scholar
  54. — (2) The ether-soluble substances of cabbage leaf cytoplasm. II. Calcium salts of glyceride phosphoric acids. Biochem J. 21, 233 (1927).PubMedGoogle Scholar
  55. — The ether-soluble substances of cabbage leaf cytoplasm. VI. Summary and general conclusions. Biochem. J. 23, 176 (1929).PubMedGoogle Scholar
  56. Comb, D. G., and S. Roseman: Composition and enzymatic synthesis of N-acetyl-neuraminic acid (sialic acid). J. Amer. chem. Soc. 80, 497 (1958).CrossRefGoogle Scholar
  57. Cusworth, D. C.: The isolation and identification of phosphoethanolamine from the urine of a case of hypophosphatasia. Biochem. J. 68, 262 (1958).PubMedGoogle Scholar
  58. Daun, H.: Zur Kenntnis des Folch’schen Strandins. Promotionsarbeit Universität Köln 1952.Google Scholar
  59. Dawson, R. M. C.: The incorporation of labelled phosphate into the lipids of a brain dispersion. Biochem. J. 55, 507 (1953).PubMedGoogle Scholar
  60. — The measurement of P32 labelling of individual cephalins and lecithins in a small sample of tissue. Biochim. biophys. Acta 14, 374 (1954).PubMedCrossRefGoogle Scholar
  61. — (1) The rôle of glycerylphosphorylcholine and glycerylphosphorylethanolamine in liver phospholipid metabolism. Biochem. J. 59, 5 (1955).PubMedGoogle Scholar
  62. — (2) Phosphorylcholine in rat tissues. Biochem. J. 60, 325 (1955).PubMedGoogle Scholar
  63. — (1) Liver glycerylphosphorylcholine diesterase. Biochem. J. 62, 689 (1956).PubMedGoogle Scholar
  64. — (2) Studies on the phosphorylcholine of rat liver. Biochem. J. 62, 693 (1956).PubMedGoogle Scholar
  65. — (3) The phospholipase B of liver. Biochem. J. 64, 1 (1956).Google Scholar
  66. — (1) The identification of two lipid components in liver which enable penicillium notatum extracts to hydrolyse lecithin. Biochem. J. 68, 352 (1958).PubMedGoogle Scholar
  67. — (2) The labelling of ram semen in vivo with radioactive phosphate and (carboxy-14C) stearic acid. Biochem. J. 68, 512 (1958).PubMedGoogle Scholar
  68. — (3) The enzymic breakdown of monophosphoinositide by phospholipase B preparations. Biochim. biophys. Acta 27, 228 (1958).CrossRefGoogle Scholar
  69. — (4) Labelling of bull semen with phosphorus32 in vivo. Nature (Lond.) 181, 1014 (1958).CrossRefGoogle Scholar
  70. T. Mann and I. G. White: Glycerylphosphorylcholine and phosphorylcholine in semen and their relation to choline. Biochem. J. 65, 627 (1957).PubMedGoogle Scholar
  71. Debuch, H.: (1) Beitrag zur chemischen Konstitution der Acetalphosphatide und zur Frage des Vorkommens des Colamin-Kephalins im Gehirn. Hoppe-Seylers Z. physiol. Chem. 304, 109 (1956).PubMedCrossRefGoogle Scholar
  72. — (2) Über die enzymatische Spaltung des Lecithins aus Sojabohnen. Hoppe-Seylers Z. physiol. Chem. 306, 279 (1956).CrossRefGoogle Scholar
  73. — Nature of the linkage of the aldehyde residue in natural plasmalogens. Biochem. J. 67, 27p (1957).Google Scholar
  74. — (1) Nature of the linkage of the aldehyde residue of natural plasmalogens. J. Neurochem. 2, 243 (1958).PubMedCrossRefGoogle Scholar
  75. — (2) Die Bindung des Aldehyds im Colamin-Plasmalogen (Acetalphosphatid) aus Gehirn. Hoppe-Seylers Z. physiol. Chem. 311, 266 (1958).PubMedCrossRefGoogle Scholar
  76. — (1) Über die Stellung des Aldehyds im Colamin-Plasmalogen aus Gehirn. Hoppe-Seylers Z. physiol. Chem. 314, 49 (1959).PubMedCrossRefGoogle Scholar
  77. — (2) Über die Stellung des Aldehyds im Colamin-Plasmalogen aus Gehirn. Hoppe-Seylers Z. physiol. Chem. 317, 182 (1959).PubMedCrossRefGoogle Scholar
  78. Delezenne, C., et S. Ledebt: (1) Action du venin de cobra sur le sérum de cheval. Ses rapports avec l’hémolyse. C. R. Acad. Sci. (Paris) 152, 790 (1911).Google Scholar
  79. — (2) Formation de substances hémolytiques et de substances toxiques aux dépens du vitellus de l’oeuf, soumis à l’action du cobra. C. R. Acad. Sci. (Paris) 153, 81 (1911).Google Scholar
  80. — Nouvelle contribution à l’étude des substances hémolitiques derivées du serum et du vitellus de l’oeuf soumis à l’action des venins. C. R. Acad. Sci. (Paris) 155, 1101 (1912).Google Scholar
  81. Diluzio, N. R., and D. G. Zilversmit: Effect of choline on phosphatide metabolism of choline-deficient and cholesterol-fed rabbits. Proc. Soc. exper. Biol. (N. Y.) 92, 454 (1956).CrossRefGoogle Scholar
  82. Einset, E., and W. L. Clark: The enzymatically catalyzed release of choline from lecithin. J. biol. Chem. 231, 703 (1958).PubMedGoogle Scholar
  83. Entenman, C., I. L. Chaikoff and D. B. Zilversmit: Removal of plasma phospholipides as a function of the liver: The effect of exclusion of the liver on the turnover-rate of plasma phospholipides as measured with radioactive phosphorus. J. biol. Chem. 166, 15 (1946).PubMedGoogle Scholar
  84. Fairbairn, D.: The phospholipase of the venom of the cottonmouth moccasin (agkistrodon piscivorus 1). J. biol. Chem. 157, 633 (1945).Google Scholar
  85. Faure, M., et M. J. Morelec-Coulon: Isolement d’un acide glycero-inosito-phosphatidique contenu dans le germe de blé. C. R. Acad. Sci. (Paris) 236, 1104 (1953).Google Scholar
  86. — Isolement d’un phosphatide cristalisé à partir du muscle cardiaque du Boeuf: l’acide glycero-inosito-phosphatidique, C. R. Acad. Sci. (Paris) 238, 411 (1954).Google Scholar
  87. Feulgen, R., u. Th. bersin: Zur Kenntnis des Plasmalogens. IV. Mitteil. Eine neuartige Gruppe von Phosphatiden (Acetalphosphatide). Hoppe-Seylers Z. physiol. Chem. 260, 217 (1939).CrossRefGoogle Scholar
  88. — u. R. Voit: Über einen weitverbreiteten festen Aldehyd. Pflügers Arch. ges. Physiol. 206, 389 (1924).CrossRefGoogle Scholar
  89. Fishler, M. C., C. Entenman, M. L. Montgomery and I. L. Chaikoff: The formation of phospholipid by the hepatectomized dog as measured with radioactive phosphorus. J. biol. Chem. 150, 47 (1943).Google Scholar
  90. Fishler, M. C., A. Taurog, I. Perlman and I. L. Chaikoff: The synthesis and breakdown of liver phos-pholipid in vitro with radioactive phosphorus as indicator. J. biol. Chem. 141, 809 (1941).Google Scholar
  91. Folch, J.: The isolation of phosphatidyl serine from brain cephalin and identification of the serine component. J. biol. Chem. 139, 973 (1941).Google Scholar
  92. — Brain cephalin a mixture of phosphatides. Separation from it of phosphatidyl serine, phosphatidyl ethanolamine and a fraction containing an inositol phosphatide. J. biol. Chem. 146, 35 (1942).Google Scholar
  93. — The chemical structure of phosphatidyl serine. J. biol. Chem. 174, 439 (1948).PubMedGoogle Scholar
  94. — (1) Complete fractionation of brain cephalin: Isolation from it of phosphatidyl serine, phosphatidyl ethanolamine and diphosphoinositide. J. biol. Chem. 177, 497 (1949).PubMedGoogle Scholar
  95. — (2) Brain diphosphoinositide a new phosphatide having inositol metadiphosphate as a constituent. J. biol. Chem. 177, 505 (1949).PubMedGoogle Scholar
  96. S. Arsove and J. A. Meath: Isolation of brain strandin, a new type of large molecule tissue component. J. biol. Chem. 191, 819 (1951).PubMedGoogle Scholar
  97. — and F. N. Lebaron: Biochemistry of inositol lipides of the central nervous system. IV. Intern. Kongr. Biochem. Wien; Symp. III Vordruck 10 (1958).Google Scholar
  98. — and H. A. Schneider: An amino acid constituent of ox brain cephalin. J. biol. Chem. 137, 51 (1941).Google Scholar
  99. Fränkel, S., U. F. Bielschowsky: Untersuchungen über die Lipoide der Säugetierleber. Über das Vorkommen des Lignoceryl-sphingosins in der Schweineleber. Hoppe-Seylers Z. physiol. Chem. 213, 58 (1932).CrossRefGoogle Scholar
  100. Freinkel, N.: Pathways of thyroidal phosphorus metabolism: the effect of pituitary thyrotropin upon the phospholipids of the sheep thyroid gland. Endocrinology 61, 448 (1957).PubMedCrossRefGoogle Scholar
  101. Friedkin, M., and A. L. Lehninger: Oxidation-coupled incorporation of inorganic radio-phosphate into phospholipide and nucleic acid in a cell-free system. J. biol. Chem. 177, 775 (1949).PubMedGoogle Scholar
  102. Fries, A., S. Ruben, I. Perlman and I. L. Chaikoff: Radioactive phosphorus as an indicator of phospholipid metabolism. II. The rôle of the stomach, small intestine and large intestine in phospholipid metabolism in the presence and absence of ingested fat. J. biol. Chem. 123, 587 (1938).Google Scholar
  103. Fries, B. A., H. Schachner and I. L. Chaikoff: The in vitro formation of phospholipid by brain and nerve tissue with radioactive phosphorus as indicator. J. biol. Chem. 144, 59 (1942).Google Scholar
  104. Fujino, Y.: Studies on the conjugated lipids. III. On the configuration of sphingomyelin. J. Biochem. (Tokyo) 39, 45 (1952).Google Scholar
  105. Goldman, D. S., I. L. Chaikoff, W. O. Reinhardt, C. Entenman and W. G. Dauben: Site of formation of plasmaphospholipides studied with C14-labeled palmitic acid. J. biol. Chem. 184, 727 (1950).PubMedGoogle Scholar
  106. Gottschalk, A.: Virus enzymes and virus templates. Physiol. Rev. 37, 66 (1957).PubMedGoogle Scholar
  107. Gray, G. M.: The position of the aldehyde residue in natural plasmalogens. Biochem. J. 67, 26p (1957).Google Scholar
  108. — The structure of the plasmalogens of ox heart. Biochem. J. 70, 425 (1958).PubMedGoogle Scholar
  109. — and M. G. Macfarlane: Separation and composition of the phospholipids of ox heart. Biochem. J. 70, 409 (1958).PubMedGoogle Scholar
  110. Greenbaum, A. L., and R. F. Glascock: The synthesis of lipids in the livers of rats treated with pituitary growth hormone. Biochem. J. 67, 360 (1957).PubMedGoogle Scholar
  111. Grimbert, L., et O. Bailly: Sur un procédé de diagnose des monoéthers glycérophosphoriques et sur la constitution du glycérophosphate de sodium crystallisé. C. R. Acad Sci. (Paris) 160, 207 (1915).Google Scholar
  112. Gurin, S., and D. I. Crandall: Lipid metabolism. Ann. Rev. Biochem. 20, 179 (1951).PubMedCrossRefGoogle Scholar
  113. Hahn, L., and G. Hevesy: Interaction between the phosphatides of the plasma and the corpuscles. Nature (Lond.) 144, 72 (1939).CrossRefGoogle Scholar
  114. Halliday, N., H. J. Deuel jr., L. J. Tragerman and W. E. Ward: On the isolation of a glucose-containing cerebroside from spleen in a case of Gaucher’s disease. J. biol. Chem. 132, 171 (1940).Google Scholar
  115. Hanahan, D. J.: The enzymatic degradation of phosphatidylcholine in diethylether. J. biol. Chem. 195, 199 (1952).PubMedGoogle Scholar
  116. — The site of action of lecithinase A on lecithin. J. biol. Chem. 207, 879 (1954).PubMedGoogle Scholar
  117. — and R. Blomstrand: Observations on the incorporation in vivo of palmitic acid-l-C14 and oleic acid-l-C14 into lecithins. J. biol. Chem. 222, 677 (1956).PubMedGoogle Scholar
  118. — and I. L. Chaikoff: (1) The phosphorus-containing lipides of the carrot. J. biol. Chem. 168, 233 (1947).PubMedGoogle Scholar
  119. — (2) A new phospholipide-splitting enzyme specific for the ester linkage between, the nitrogenous base and the phosphoric acid grouping. J. biol. Chem. 169, 699 (1947).PubMedGoogle Scholar
  120. — On the nature of the phosphorus containing lipides of cabbage leaves and their relation to a phospholipide-splitting enzyme contained in these leaves. J. biol. Chem. 172, 191 (1948).PubMedGoogle Scholar
  121. Hanahan, D. J., and M. E. Jayko: The isolation of dipalmitoleyl-L-α-glycerylphosphorylcholine from yeast. A new route to (dipalmitoyl)-L-α-lecithin. J. Amer. chem. Soc. 74, 5070 (1952).CrossRefGoogle Scholar
  122. — and J. N. Olley: Chemical nature of monophosphoinositides. J. biol. Chem. 231, 813 (1958).PubMedGoogle Scholar
  123. M. Rodbell and L. D. Turner: Enzymatic formation of monopalmitoleyl and mono-palmitoyllecithin (lysolecithins). J. biol. Chem. 206, 431 (1954).PubMedGoogle Scholar
  124. — and R. Vercamer: The action of lecithinase D on lecithin. The enzymatic preparation of D-1,2-dipalmitolein and D-1,2-dipalmitin. J. Amer. chem. Soc. 76, 1804 (1954).CrossRefGoogle Scholar
  125. Hawthorne, J. N.: (1) The ethanol-insoluble phosphatides of mammalian liver. Biochem. J. 59, II (1955).Google Scholar
  126. — (2) A further study of inositol-containing lipids. Biochim. biophys. Acta 18, 389 (1955).PubMedCrossRefGoogle Scholar
  127. Hokin, L. E., and M. R. Hokin: Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. biophys. Acta 18, 102 (1955).PubMedCrossRefGoogle Scholar
  128. — The actions of pancreozymin in pancreas slices and the rôle of phospholipids in enzyme secretion. J. Physiol. (Lond.) 132, 442 (1956).Google Scholar
  129. — The presence of phosphatidic acid in animal tissues. J. biol. Chem. 233, 800 (1958).PubMedGoogle Scholar
  130. Hokin, M. R., and L. E. Hokin: Enzyme secretion and the incorporation of P32 into phospho-lipides of pancreas slices. J. biol. Chem. 203, 967 (1953).PubMedGoogle Scholar
  131. Jardetzky, C. D., C. P. Barnum and H. Vermund: Deoxyribonucleic acid and phospho-lipide metabolism in regenerating liver and the effect of X-radiation. J. biol. Chem. 222, 421 (1956).PubMedGoogle Scholar
  132. Jedeikin, L. A., and S. Weinhouse: Studies of the incorporation of palmitate-1-C14 into tissue lipides in vitro. Arch. Biochem. 50, 134 (1954).PubMedCrossRefGoogle Scholar
  133. Johnson, R. M., and S. Albert: The uptake of radioactive phosphorus by rat liver following partial hepatectomy. Arch. Biochem. 35, 340 (1952).PubMedCrossRefGoogle Scholar
  134. Karrer, P., u. H. Salomon: Über die Glycerinphosphorsäuren aus Lecithin. Helv. chim. Acta 9, 3 (1926).CrossRefGoogle Scholar
  135. Kates, M.: Hydrolysis of lecithin by plant plastic enzymes. Canad. J. Biochem. 33, 575 (1955).PubMedCrossRefGoogle Scholar
  136. — Hydrolysis of glycerolphosphatides by plastid phosphatidase C. Canad. J. Biochem. 34, 967 (1956).PubMedCrossRefGoogle Scholar
  137. — Effect of solvents and surface-active agents on plastid phosphatidase C activity. Canad. J. Biochem. 35, 127 (1957).PubMedCrossRefGoogle Scholar
  138. — and P. R. Gorham: Coalescence as a factor in solvent stimulation of plastid phosphatidase C activity. Canad. J. Biochem. 35, 119 (1957).PubMedCrossRefGoogle Scholar
  139. Kennedy. E. P.: Synthesis of phospholipids in isolated mitochondria. Fed. Proc. 11, 239 (1952).Google Scholar
  140. — (1) Synthesis of phosphatides in isolated mitochondria. J. biol. Chem. 201, 399 (1953).PubMedGoogle Scholar
  141. — (2) The synthesis of lecithin in isolated mitochondria. J. Amer. chem. Soc. 75, 249 (1953).CrossRefGoogle Scholar
  142. — Synthesis of phosphatides in isolated mitochondria. II. Incorporation of choline into lecithin. J. biol. Chem. 209, 525 (1954).PubMedGoogle Scholar
  143. — (1) The synthesis of cytidine diphosphate choline, cytidine diphosphate ethanolamine, and related compounds. J. biol. Chem. 222, 185 (1956).PubMedGoogle Scholar
  144. — (2) The biological synthesis of phospholipids. Canad. J. Biochem. 34, 334 (1956).PubMedCrossRefGoogle Scholar
  145. — and S. B. Weiss: Cytidine diphosphate choline: a new intermediate in lecithin biosynthesis. J. Amer. chem. Soc. 77, 250 (1955).CrossRefGoogle Scholar
  146. — (1) Enzymic conversion of CDP-choline and CDP-ethanolamine to phospholipids. Fed. Proc. 15, 381 (1956).Google Scholar
  147. — (2) The function of cytidine coenzymes in the biosynthesis of phospholipides. J. biol. Chem. 222, 193 (1956).PubMedGoogle Scholar
  148. Kiss, J., G. Fodor U. D. Banfi: Zurückführung der Konfiguration des (natürlichen) Sphingo-sins auf die D-erythro-2-amino-3,4-dioxybuttersäure. Helv. chim. Acta 37, 1471 (1954).CrossRefGoogle Scholar
  149. Klenk, E.: Über Sphingosin. Hoppe-Seylers Z. physiol. Chem. 185, 169 (1929).CrossRefGoogle Scholar
  150. — Neuraminsäure, das Spaltprodukt eines neuen Gehirnlipoids. Hoppe-Seylers Z. physiol. Chem. 268, 50 (1941).CrossRefGoogle Scholar
  151. — Über die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden. Hoppe-Seylers Z. physiol. Chem. 273, 76 (1942).CrossRefGoogle Scholar
  152. — Zur Kenntnis der Ganglioside. Hoppe-Seylers Z. physiol. Chem. 288, 216 (1951).PubMedGoogle Scholar
  153. — (1) Über die Biogenese der C20-und C22-Polyensäuren in der Säugetierleber. Hoppe-Seylers Z. physiol. Chem. 302, 268 (1955).PubMedCrossRefGoogle Scholar
  154. — (2) Über die Biogenese der C20-und C22-Polyensäuren bei den Säugetieren. Biochem. problems of lipids. London: Butterworth 1955.Google Scholar
  155. — Chemie und Biochemie der Neuraminsäure. Angew. Chem. 68, 349 (1956).CrossRefGoogle Scholar
  156. — Neuraminic acid. Ciba foundation, Symp. Chemistry and Biology of Mucopolysaccharides 15 (1958).Google Scholar
  157. Klenk, E., u. P. Böhm: Zur Kenntnis der Kephalinfraktion des Gehirns. Hoppe-Seylers Z. physiol. Chem. 288, 98 (1951).PubMedGoogle Scholar
  158. — u. W. Bongard: Die Konstitution der ungesättigten C20-und C22-Fettsäuren der Glycerin-phosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 291, 104 (1952).PubMedGoogle Scholar
  159. — u. H. Debuch: Zur Frage des Vorkommens der hochungesättigten Fettsäuren C20 und C22 in den Pflanzenphosphatiden. Hoppe-Seylers Z. physiol. Chem. 286, 33 (1950).PubMedCrossRefGoogle Scholar
  160. — Zur Kenntnis der Acetalphosphatide. Hoppe-Seylers Z. physiol. Chem. 296, 179 (1954).PubMedCrossRefGoogle Scholar
  161. — Zur Kenntnis der cholinhaltigen Plasmalogene (Acetalphosphatide) des Rinderherzmuskels. Hoppe-Seylers Z. physiol. Chem. 299, 66 (1955).PubMedCrossRefGoogle Scholar
  162. — The lipides. Ann. Rev. Biochem. 28, 39 (1959).PubMedCrossRefGoogle Scholar
  163. — u. W. Diebold: Über Sphingosin. Hoppe-Seylers Z. physiol. Chem. 198, 25 (1931).CrossRefGoogle Scholar
  164. — u. A. Dreike: Über die Polyenfettsäuren der Leberphosphatide. Hoppe-Seylers Z. physiol. Chem. 300, 113 (1955).PubMedCrossRefGoogle Scholar
  165. — u. H. Faillard: Über Sphingosin. Hoppe-Seylers Z. physiol. Chem. 299, 48 (1955).PubMedCrossRefGoogle Scholar
  166. — u. G. Gehrmann: Über die Glycerinphosphatide des Rinderherzmuskels und das Vorkommen von cholinhaltigen Acetalphosphatiden. Hoppe-Seylers Z. physiol. Chem. 292, 110 (1953).PubMedCrossRefGoogle Scholar
  167. — u. R. Härle: Über das Galaktosido-sphingosin, das partielle Spaltprodukt der Cerebroside. Hoppe-Seylers Z. physiol. Chem. 178, 221 (1928).CrossRefGoogle Scholar
  168. — u. K. Lauenstein: Über die zuckerhaltigen Liopide der Formbestandteile des menschlichen Blutes. Hoppe-Seylers Z. physiol. Chem. 288, 220 (1951).PubMedGoogle Scholar
  169. — Über die zuckerhaltigen Lipoide des Erythrocytenstromas von Mensch und Rind. Hoppe-Seylers Z. physiol. Chem. 291, 249 (1952).Google Scholar
  170. — Über die Glykolipoide und Sphingomyeline des Stromas der Pferdeerythrocyten. Hoppe-Seylers Z. physiol. Chem. 295, 164 (1953).PubMedCrossRefGoogle Scholar
  171. — u. F. Lindlar: (1) Über die Docosapolyensäuren der Glycerinphosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 299, 74 (1955).PubMedCrossRefGoogle Scholar
  172. — (2) Über die Eikosapolyensäuren der Glycerinphosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 301, 156 (1955).PubMedCrossRefGoogle Scholar
  173. — u. W. Montag: Über die Eikosapolyensäuren der Glycerinphosphatide aus Rinderleber. Justus Liebigs Ann. Chem. 604, 4 (1957).CrossRefGoogle Scholar
  174. — (1) Über das Vorkommen der zJ9, 12, 15, 18-n-tetrakosatetraensäure in den Glycerin-phosphatiden des Gehirns und deren Isolierung. J. Neurochem. 2, 226 (1958).PubMedCrossRefGoogle Scholar
  175. — (2) Über die C22-Polyensäuren der Glycerinphosphatide des Gehirns. J. Neurochem. 2, 233 (1958).PubMedCrossRefGoogle Scholar
  176. — u. F. Rennkamp: Der Zucker im Cerebrosid der Milz bei der Gaucher-Krankheit. Hoppe-Seylers Z. physiol. Chem. 272, 280 (1942).CrossRefGoogle Scholar
  177. — u. H. J. Tomuschat: Über die Dokosapolyensäuren der Glycerinphosphatide aus Rinderleber. Hoppe-Seylers Z. physiol. Chem. 308, 165 (1957).PubMedCrossRefGoogle Scholar
  178. — u. G. Uhlenbruck: Über die Abspaltung von N-Glycolyl-neuraminsäure (P-Sialinsäure) aus dem Schweine-Submaxillarismucin durch das “Receptor-Destroying Enzyme”. Hoppe-Seylers Z. physiol. Chem. 307, 266 (1957).PubMedCrossRefGoogle Scholar
  179. — Über ein Neuraminsäurehaltiges Mucoproteid aus Rindererythrocytenstroma. Hoppe-Seylers Z. physiol. Chem. 311, 227 (1958).PubMedCrossRefGoogle Scholar
  180. — u. H. Wolter: Über die zuckerhaltigen Lipoide des Erythrocytenstromas vom Pferd. Hoppe-Seylers Z. physiol. Chem. 291, 259 (1952).Google Scholar
  181. Kline, D., C. Mcpherson, E. T. Pritchard and R. J. Rossiter: Effect of food deprivation on the labeling of phospholipide in rat liver slices. J. biol. Chem. 222, 219 (1956).PubMedGoogle Scholar
  182. — and R. J. Rossiter: Phospholipid metabolism in rat liver slices. Effect of hypophysectomy and adrenalectomy on the labeling of phospholipids with acetate-1-C14. Canad. J. Biochem. 35, 25 (1957).CrossRefGoogle Scholar
  183. Kornberg, A., and W. E. Pricer: (1) Studies on the enzymatic synthesis of phospholipides. Fed. Proc. 11, 242 (1952).Google Scholar
  184. — (2) Enzymatic synthesis of phosphorus containing lipides. J. Amer. chem. Soc. 74, 1617 (1952).CrossRefGoogle Scholar
  185. — (1) Enzymatic synthesis of the coenzym A derivatives of long chain fatty acids. J. biol. Chem. 204, 329 (1953).PubMedGoogle Scholar
  186. — (2) Enzymatic esterification of α-glycerophosphate by long chain fatty acids. J. biol. Chem. 204, 345 (1953).PubMedGoogle Scholar
  187. Kuhn, R., u. R. Brossmer, mitbearbeitet von W. Schulz: Über die prosthetische Gruppe der Mucoproteine des Kuh-Colostrums. Chem. Ber. 87, 123 (1954).CrossRefGoogle Scholar
  188. — Abbau der Lactaminsäure zu N-Acetyl-D-Glucosamin. Chem. Ber. 89, 2471 (1956).CrossRefGoogle Scholar
  189. — Zur Konfiguration der Lactaminsäure. Justus Liebigs Ann. Chem. 616, 221 (1958).CrossRefGoogle Scholar
  190. Levene, P. A., and I. P. Rolf: Lysolecithins and lysokephalins. J. biol. Chem. 55, 743 (1923).Google Scholar
  191. Liebermann, I., L. Berger and W. T. Giminez: Cristallisation of cytidine diphosphate choline from yeast. Science 124, 81 (1956).CrossRefGoogle Scholar
  192. Long, C., and M. F. Maguire: (1) The structure of the naturally occurring phosphoglycerides. 1. Evidence derived from alkaline-hydrolysis studies. Biochem. J. 54, 612 (1953).PubMedGoogle Scholar
  193. — (2) Evidence for the structure of ovolecithin derived from a study of the action of lecithinase C. Biochem. J. 55, XV (1953).Google Scholar
  194. — and I. F. Penny: The structure of the lysolecithin formed by the action of snake venom phospholipase A on ovolecithin. Biochem. J. 58, XV (1954).PubMedGoogle Scholar
  195. — The structure of naturally occurring phosphoglycerides. 3. Action of moccasin-venom phospholipase A on ovolecithin and related substances. Biochem. J. 65, 382 (1957).PubMedGoogle Scholar
  196. Lüdecke, K.: Zur Kenntnis der Glycerinphosphorsäure und des Lecithins. Diss. München phil. Fakultät Sek. II (1905).Google Scholar
  197. Lundquist, F.: Studies on the biochemistry of human semen. I. The natural substrate of prostatic phosphatase. Acta physiol. scand. 13, 322 (1946/47).Google Scholar
  198. Macarthur, C. G.: Brain cephalin: I. Distribution of the nitrogeneous hydrolysis products of cephalin. J. Amer. chem. Soc. 36, 2397 (1914).CrossRefGoogle Scholar
  199. — and L. V. Burton: Brain cephalin: II. Fatty acids. J. Amer. chem. Soc. 38, 1375 (1916).CrossRefGoogle Scholar
  200. Maccandles, E. L., and D. B. Zilversmit: The effect of cholesterol on the turnover of lecithin, cephalin and sphingomyelin in the rabbit. Arch. Biochem. 62, 402 (1956).CrossRefGoogle Scholar
  201. Macfarlane, M. G.: Structure of cardiolipin. Nature (Lond.) 182, 946 (1958).CrossRefGoogle Scholar
  202. — and G. M. Gray: Composition of cardiolipin. Biochem. J. 67, 25p (1957).Google Scholar
  203. — and B. C. J. G. Knight: The biochemistry of bacterial toxins. I. The lecithinase activity of Clostridium welchii toxins. Biochem. J. 35, 884 (1941).PubMedGoogle Scholar
  204. Maclean, H.: The composition of “Lecithin” together with observations on the distribution of phosphatides in the tissues and methods for their extraction and purification. Biochem. J. 9, 351 (1915).PubMedGoogle Scholar
  205. Marinetti, G. V., J. F. Berry, G. Rouser and E. Stotz: Studies on the structure of sphingomyelin. II. Performic and periodic acid oxidation studies. J. Amer. chem. Soc. 75, 313 (1953).CrossRefGoogle Scholar
  206. — and J. Erbland: The structure of pig heart plasmalogens. Biochim. biophys. Acta 26, 429 (1957).PubMedCrossRefGoogle Scholar
  207. J. Erbland, M. Albrecht and E. Stotz: (2) The application of chromatographic methods to study the incorporation of 32P-labeled orthophosphate into the phosphatides of rat liver homogenates. Biochim. biophys. Acta 25, 585 (1957).PubMedCrossRefGoogle Scholar
  208. — (3) The in vitro incorporation of 32P-labeled orthophosphate into the phosphatides of isolated rat liver mitochondria. Biochim. biophys. Acta 26, 130 (1957).PubMedCrossRefGoogle Scholar
  209. — and E. Stotz: (1) The structure of pig heart plasmalogens. J. Amer. chem. Soc. 80, 1624 (1958).CrossRefGoogle Scholar
  210. — (2) Phosphatides of pig heart cell fractions. J. biol. Chem. 233, 562 (1958).PubMedGoogle Scholar
  211. — and E. Stotz: Studies on the structure of sphingomyelin. IV. Configuration of the double bond in sphingomyelin and related lipids and a study of their infrared spectra. J. Amer, chem. Soc. 76, 1347 (1954).CrossRefGoogle Scholar
  212. — Chromatography of phosphatides on silicic acid impregnated paper. Biochim. biophys. Acta 21, 168 (1956).PubMedCrossRefGoogle Scholar
  213. R. F. Witter and E. Stotz: (1) The incorporation in vivo of P32-labeled orthophosphate into individual phosphatides of rat tissues. J. biol. Chem. 226, 475 (1957).PubMedGoogle Scholar
  214. Matsumoto, M.: The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. VII. Studies on chondrosamine-containing glycolipid and sphingomyelin of hog blood stroma. J. Biochem (Tokyo) 43, 53 (1956).Google Scholar
  215. Mcmurray, W. C., J. F. Berry and K. P. Strickland: Labeling of brain phospholipid in vitro. Fed. Proc. 15, 313 (1956).Google Scholar
  216. J. F. Berry and R. J. Rossiter: (2) Labelling of phospholipid phosphorus in rat-brain mitochondria. Biochem. J. 66, 629 (1957).PubMedGoogle Scholar
  217. K. P. Strickland, J. F. Berry and R. J. Rossiter: (1) Labelling of phospholipid phosphorus in rat brain dispersions. Biochem. J. 66, 621 (1957).PubMedGoogle Scholar
  218. K.P. Strickland, J. F. Berry and R. J. Rossiter: (3) Incorporation of 32P-labeled intermediates into the phospholipids of cell-free preparations of rat brain. Biochem. J. 66, 634 (1957).PubMedGoogle Scholar
  219. Merz, W.: Über das Vorkommen von ätherunlöslichen Lecithinen im Gehirn. Hoppe-Seylers Z. physiol. Chem. 196, 10 (1931).CrossRefGoogle Scholar
  220. Mislow, K.: The geometry of sphingosine. J. Amer. chem. Soc. 74, 5155 (1952).CrossRefGoogle Scholar
  221. Montag, W., E. Klenk, H. Hayes and R. T. Holman: The eicosapolyenoic acids occurring in the glycerophosphatides of beef liver. J. biol. Chem. 227, 53 (1957).PubMedGoogle Scholar
  222. Moser, H., and M. L. Karnovsky: Studies on the biosynthesis of cerebroside galactose. Neurology 8, 81 (1958).PubMedCrossRefGoogle Scholar
  223. Nakayama, T.: Studies on the conjugated lipids. II. On cerebron sulphuric acid. J. Biochem. (Tokyo) 38, 157 (1951).Google Scholar
  224. O’dell, B.L., and J. H. Bruemmer: Effect of vitamin B12 deficiency and fasting on the incorporation of P32 into nucleic acids and phospholipides of infant rats. J. biol. Chem. 227, 737 (1957).Google Scholar
  225. Ogawa, K.: Über die fermentative Lysolecithinbildung. J. Biochem. (Tokyo) 24, 389 (1936).Google Scholar
  226. Olley, J.: Instability of the phosphatide acids. Chem. and Ind. 1954, 1069.Google Scholar
  227. Outhouse, E. L.: Amino-ethyl phosphoric ester from tumors. Biochem. J. 30, 197 (1936).PubMedGoogle Scholar
  228. — Further studies of amino-ethyl phosphoric ester — a compound apparently specific to malignant tumors. Biochem. J. 31, 1459 (1937).PubMedGoogle Scholar
  229. Pangborn, M. C.: The composition of cardiolipin. J. biol. Chem. 168, 351 (1947).PubMedGoogle Scholar
  230. Pilgeram, L. O., R. E. Hamilton and D. M. Greenberg: Some factors influencing phosphatidylcholine formation. J. biol. Chem. 227, 107 (1957).PubMedGoogle Scholar
  231. Popják, G.: Metabolism of lipids. Brit. med. Bull. 14, 197 (1958).Google Scholar
  232. — and H. Muir: In search of a phospholipin precursor. Biochem. J. 46, 103 (1950).PubMedGoogle Scholar
  233. Potter, R. L., and V. Buettner-Janusch: Deoxycytidine diphosphoethanolamine and its ribose analogue in the acid soluble extract of calf thymus. J. biol. Chem. 233, 462 (1958).PubMedGoogle Scholar
  234. Radin, N. S., F. B. Martin and J. R. Brown: Galactolipide metabolism. J. biol. Chem. 224, 499 (1957).PubMedGoogle Scholar
  235. Ranney, R. E., I. L. Chaikoff and C. Entenman: Site of formation of plasma phospholipides in the bird. Amer. J. Physiol. 165, 596 (1951).PubMedGoogle Scholar
  236. Rapport, M. M., and N. Alonzo: Identification of phosphotidal choline as the major constituent of beef heart lecithin. J. biol. Chem. 217, 199 (1955).PubMedGoogle Scholar
  237. — and R. E. Franzl: (1) The structure of plasmalogens I. Hydrolysis of phosphatidal choline by lecithinase A. J. biol. Chem. 225, 851 (1957).PubMedGoogle Scholar
  238. — (2) The structure of plasmalogen III. The nature and significance of the aldehydogenic linkage. J. Neurochem. 1, 303 (1957).PubMedCrossRefGoogle Scholar
  239. B. Lerner, N. Alonzo and R. E. Franzl: The structure of plasmalogens II. Crystalline lysophosphatidal ethanolamine (acetal phospholipide). J. biol. Chem. 225, 859 (1957).PubMedGoogle Scholar
  240. Rennkamp, F.: Untersuchungen über das Sphingomyelin und die ätherunlöslichen Glycerin-phosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 284, 215 (1949).CrossRefGoogle Scholar
  241. Riley, R. F.: Metabolism of phosphorylcholine. J. Biol. Chem. 153, 535 (1944).Google Scholar
  242. Rodbell, M., and D. J. Hanahan: Some aspects of the metabolism of lecithin and its derivatives in liver. J. biol. Chem. 214, 595 (1955).PubMedGoogle Scholar
  243. Rosenberg, A., and E. Chargaff: Nitrogenous constituents of an ox brain mucolipid. Biochim. biophys. Acta 21, 588 (1956).PubMedCrossRefGoogle Scholar
  244. C. Howe and E. Chargaff: Inhibition of influenza virus haemagglutination by brain lipid fraction. Nature (Lond.) 177, 234 (1956).CrossRefGoogle Scholar
  245. Rossiter, R. J., I.M. Mcleod and K. P. Strickland: (1) Biosynthesis of lecithin in brain and degenerating nerve. Participation of cytidinediphosphatecholine. Canad. J. Biochem. 35, 946 (1957).Google Scholar
  246. W. C. Mcmurray and K. P. Strickland: (2) Discussion. Biosynthesis of phosphatides in brain and nerve. Fed. Proc. 16, 853 (1957).PubMedGoogle Scholar
  247. Rouser, G., J. F. Berry, G. Marinetti and E. Stotz: Studies on structure of sphingomyelin. I. Oxidation of products of partial hydrolysis. J. Amer. chem. Soc. 75, 310 (1953).CrossRefGoogle Scholar
  248. Schachner, H., B. A. Fries and I. L. Chaikoff: The effect of hexoses and pentoses on the formation in vitro of phospholipid by brain tissue as measured with radioactive phosphorus. J. biol. Chem. 146, 95 (1942).Google Scholar
  249. Schuwirth, K.: Serin als stickstoffhaltiger Bestandteil der Glycerinphosphatide aus Menschengehirn. Hoppe-Seylers Z. physiol. Chem. 270, 1 (1941).CrossRefGoogle Scholar
  250. — Serin als stickstoffhaltiger Bestandteil der Glycerinphosphatide des Menschengehirns. Hoppe-Seylers Z. physiol. Chem. 277, 87 (1943).CrossRefGoogle Scholar
  251. Shorland, F. B.: Chemistry of the lipides. Ann. Rev. Biochem. 25, 101 (1956).PubMedCrossRefGoogle Scholar
  252. Sinclair, R. G.: Blood phospholipid as a transport mechanism. J. biol. Chem. 115, 211 (1936).Google Scholar
  253. Smith, S. W., S. B. Weiss and E. P. Kennedy: The enzymatic dephosphorylation of phosphatide acids. J. biol. Chem. 228, 915 (1957).PubMedGoogle Scholar
  254. Sprinson, D. B., and A. Coulon: The precursors of sphingosine in brain tissue. J. biol. Chem. 207, 585 (1954).PubMedGoogle Scholar
  255. Sribney, M., and E. P. Kennedy: Enzymatic synthesis of sphingomyelin. Fed. Proc. 16, 235 (1957).Google Scholar
  256. — The enzymatic synthesis of sphingomyelin. J. biol. Chem. 233, 1315 (1958).PubMedGoogle Scholar
  257. Stevens, B. P., and I. P. Chaikoff: Incorporation of short chain fatty acids into phospholipides by the rat. J. biol. Chem. 193, 465 (1952).Google Scholar
  258. Strickland, K. P.: Factors affecting the incorporation of radioactive phosphate into the phospholipids of slices of cat brain. Can. J. Biochem. 32, 50 (1954).PubMedCrossRefGoogle Scholar
  259. R. H. S. Thompson and G. R. Webster: Hydrolysis of phosphoryl choline and related esters by the phosphomonoesterases of animal tissues. Arch. Biochem. 64, 498 (1956).CrossRefGoogle Scholar
  260. Svennerholm, L.: On sialic acid in brain tissue. Acta chem. scand. 10, 694 (1956).CrossRefGoogle Scholar
  261. Taurog, A., I. L. Chaikoff and I. Perlman: The effect of anaerobic conditions and respiratory inhibitors on the in vitro phospholipid formation in liver and kidney with radioactive phosphorus as indicator. J. biol. Chem. 145, 281 (1942).Google Scholar
  262. Thannhauser, S. J., and N. F. Boncoddo: (1) Isolation and identification of hydrolecithin (dipalmityl lecithin) from brain and spleen. J. biol. Chem. 172, 135 (1948).PubMedGoogle Scholar
  263. — (2) The chemical nature of the fatty acids of brain and spleen sphingomyelin. The occurrence of saturated and unsaturated sphingosines in the sphingomyelin molecule. J. biol. Chem. 172, 141 (1948).PubMedGoogle Scholar
  264. — and G. Schmidt: (1) Studies of acetal phospholipides of brain. I. Procedure of isolation of crystallized acetal phospholipide from brain. J. biol. Chem. 188, 417 (1951).PubMedGoogle Scholar
  265. — (2) Studies of acetal phospholipides of brain. II. The α-structure of acetal phospholipide of brain. J. biol. Chem. 188, 423 (1951).PubMedGoogle Scholar
  266. J. Fellig and G. Schmidt: The structure of cerebroside sulphuric ester of beef brain. J. biol. Chem. 215, 211 (1955).PubMedGoogle Scholar
  267. Thierfelder, H.: Über die Identität des Gehirnzuckers mit Galactose. Hoppe-Seylers Z. physiol. Chem. 14, 209 (1890).Google Scholar
  268. — u. E. Klenk: Die Chemie der Cerebroside und Phosphatide. Berlin: Springer 1930.Google Scholar
  269. Thudichum, J. L. W.: Die chemische Konstitution des Gehirns des Menschen und der Tiere. Tübingen: Franz Pietzker 1901.Google Scholar
  270. Tookey, H. L., and A. K. Balls: (1) Plant phospholipase D. I. Studies on cottonseed and cabbage phospholipase D. J. biol. Chem. 218, 213 (1956).PubMedGoogle Scholar
  271. — (2) Plant phospholipase D. II. Inhibition of succinic oxidase by cottonseed phospholipase D. J. biol. Chem. 220, 15 (1956).PubMedGoogle Scholar
  272. Tyrrell, L. W.: A cephalinase in nervous tissue. Nature (Lond.) 166, 310 (1950).CrossRefGoogle Scholar
  273. Uziel, M., and D. J. Hanahan: An enzymatic route to L-α-glycerylphosphorylcholine. J. biol. Chem. 220, 1 (1956).PubMedGoogle Scholar
  274. — An enzyme-catalysed acyl migration: a lysolecithin migratase. J. biol. Chem. 226, 789 (1957).PubMedGoogle Scholar
  275. Verkade, P.E., J. C. Stoppelenburg U. W. D. Cohen: Über die Stabilität der beiden Glycerolphosphorsäuren und diejenige ihrer Salze. Ree. Trav. chim. Pays-Bas 59, 886 (1940).CrossRefGoogle Scholar
  276. Weinman, E. O., I. L. Chaikoff, C. Entenman and W. G. Dauben: Turnover rates of phosphate and fatty acid moieties of plasma phospholipides. J. biol. Chem. 187, 643 (1950).PubMedGoogle Scholar
  277. Weiss, S. B., and E. P. Kennedy: The enzymatic synthesis of triglycerides. J. Amer. chem. Soc. 78, 3550 (1956).CrossRefGoogle Scholar
  278. S. W. Smith and E. P. Kennedy: Net synthesis of lecithin in an isolated enzyme system. Nature (Lond.) 178, 594 (1956).CrossRefGoogle Scholar
  279. — The enzymatic formation of lecithin from cytidine diphosphate choline and D-1,2-diglyceride. J. biol. Chem. 231, 53 (1958).PubMedGoogle Scholar
  280. Werner, S., and L. Odin: On the presence of sialic acid in certain glycoproteins and in gangliosides. Acta Soc. Med. upsalien. 57, 230 (1952).Google Scholar
  281. Wittenberg, J., and A. Kornberg: Choline Phosphokinase. J. biol. Chem. 202, 431 (1953).PubMedGoogle Scholar
  282. Witter, R. F., and M. A. Cottone: The effect of lysolecithin and related compounds on the swelling of isolated mitochondria. Biochim. biophys. Acta 22, 372 (1956).PubMedCrossRefGoogle Scholar
  283. A. Morrison and G. R. Shephardson: Effect of lysolecithin on oxidative phosphorylation. Biochim. biophys. Acta 26, 120 (1957).PubMedCrossRefGoogle Scholar
  284. Yamakawa, T.: On the so-called sialic acids of blood cells and serum. J. Biochem. (Tokyo) 43, 867 (1956).Google Scholar
  285. M. Matsumoto and S. Suzuki: (2) The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. VIII. The nature of hexosamine and fatty acids of bloodcells sphingolipids. J. Biochem. (Tokyo) 43, 63 (1956).Google Scholar
  286. — and T. Iida: (1) The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. VI. Sphingolipids of erythrocytes with respect to blood group activities. J. Biochem. (Tokyo) 43, 41 (1956).Google Scholar
  287. — and S. Suzuki: The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. I. Concerning the etherinsoluble lipids of lyophilized horse blood stroma. J. Biochem. (Tokyo) 38, 199 (1951).Google Scholar
  288. — (1) The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. II. On the structure of hemataminic acid. J. Biochem. (Tokyo) 39, 175 (1952).Google Scholar
  289. — (2) The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. III. Globoside, the sugar-containing lipid of human blood stroma. J. Biochem. (Tokyo) 39, 393 (1952).Google Scholar
  290. — The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. IV. Distribution of lipid-hexosamine and lipid-hemataminic acid in the red blood corpuscles of various species of animals. J. Biochem. (Tokyo) 40, 7 (1953).Google Scholar
  291. Yamakawa, T., S. Suzuki, and T. Hattori: The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. V. Glycolipids of erythrocytes stroma and ganglioside. J. Biochem. (Tokyo) 40, 611 (1953).Google Scholar
  292. Zabin, I., and J. F. Mead: The biosynthesis of sphingosine. I. The utilization of carboxyl-labeled acetate. J. biol. Chem. 205, 271 (1953).PubMedGoogle Scholar
  293. — The biosynthesis of sphingosine. II. The utilization of methyl-labeled acetate, formate and ethanolamine. J. biol. Chem. 211, 87 (1954).PubMedGoogle Scholar
  294. Zeller, E. A.: Enzymes as essential components of bacterial and animal toxins. In Sumner-Myrbäck: The Enzymes. Vol. I. pt. 2, 986. N. Y. Academic Press 1951.Google Scholar
  295. — Action of cortisone acetate on hemolysis produced by the enzymic formation of lyso-lecithin from dimyristoyllecithin. Fed. Proc. 11, 316 (1952).Google Scholar
  296. Zilliken, F., G. A. Braun and P. György: Gynaminic acid, a naturally occurring form of neuraminic acid in human milk. Arch. Biochem. 54, 564 (1955).PubMedCrossRefGoogle Scholar
  297. Zilversmit, D. B.: Metabolism of the complex lipides. Ann. Rev. Biochem. 24, 157 (1955).PubMedCrossRefGoogle Scholar
  298. — and I. L. Chaikoff: (1) The measurement of turnover of the various phospholipides in liver and plasma of the dog and its application to the mechanism of action of choline. J. biol. Chem. 176, 193 (1948).PubMedGoogle Scholar
  299. — (2) The turnover rates of plasma lecithin and plasma sphingomyelin as measured by the appearance of their radioactive phosphorus from the circulation. J. biol. Chem. 176, 209 (1948).PubMedGoogle Scholar
  300. C. Entenman and M. C. Fishler: (1) On the calculation of “turnover time” and “turnover rate” from experiments involving the use of labeling agents. J. gen. Physiol. 26, 325 (1943).PubMedCrossRefGoogle Scholar
  301. — and I. L. Chaikoff: (2) The turnover rate of phospholipids in the plasma of the dog as measured with radioactive phosphorus. J. gen. Physiol. 26, 333 (1943).PubMedCrossRefGoogle Scholar
  302. E. L. Mccandless and M. L. Shore: Plasma phospholipide synthesis in the eviscerated rabbit. Proc. Soc. exp. Biol. (N. Y.) 93, 542 (1956).CrossRefGoogle Scholar
  303. — and E. Vanhandel: The origin of bile lecithin and the use of bile to determine plasma, lecithin turnover rates. Arch. Biochem. 73, 224 (1958).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1961

Authors and Affiliations

  • Hildegard Debuch

There are no affiliations available

Personalised recommendations