Advertisement

Bandenspektra

Chapter

Zusammenfassung

Die M o l e k ü l- oder B a n d e n s p e k t r a zeichnen sich zunächst rein äußerlich dadurch aus, daß sie bei geringer Dispersion als etwas verwaschene, breite Bänder erscheinen, mit einer mehr oder weniger scharfen Kante an einer Seite, von der aus die Intensität nach der entgegengesetzten Seite kontinuierlich abnimmt. Meist tritt eine Reihe solcher Bänder in Gruppen oder Zügen nebeneinander auf. Diese liegen dann stets in einem relativ engen Spektralbereich und werden in ihrer Gesamtheit als B a n d e n s y s t e m bezeichnet. Ein Molekül kann allgemein eine ganze Anzahl solcher Bandensysteme besitzen; vom neutralen CO-molekül sind beispielsweise bis heute mindestens 16 verschiedene Bandensysteme bekannt, beim He2 ist diese Zahl noch größer. Liegt die Bande auf der violetten Seite der K a n t e , so nennt man tie Bande nach Violett abschattiert, im andern Falle nach Rot. Alle Banden eines Systems zeigen dieselbe A b s c h a t t i e r u n g. Man findet beide Fälle der Abschattierung etwa gleich häufig1. Den Grund dafür, warum Rot- oder Violettabschattierung vorliegt, werden wir später erfahren (vgl. Ziff. 2 and 3). Was die Zahl der zu einem Bandensystem gehörigen T e i l- oder E i n z e l b a n d e n betrifft, so ist diese sehr schwankend. Das Bandensystem des Sauerstoffs, zu dem die bekannten atmosphärischen Absorptionsbanden gehören, weist nur einige wenige Teilbanden auf, wohingegen das im Sichtbaren gelegene Absorptionsbandenspektrum des Jods mehr als hundert besitzt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Literatur

I. Allgemeines

  1. G. Beck, Der Energetische Aufbau Der Moleküle. Z F Anorg Chem 182, S. 332 (1929), Nr. 3.Google Scholar
  2. E. Bengtsson U. E. Hulth£N, Über Eine Experimentelle Prüfung Der Kombinationsregeln Unter Den Bandenspektren. Z F Phys 52, S. 275 (1928), Nr. 3/4.ADSGoogle Scholar
  3. Raymond T. Birge, The Rotational and Vibrational Energy of Molecules. Phys Rev (2) 31, S. 919 (1928), Nr. 5.Google Scholar
  4. Raymond T. Birge, The Hydrogen Molecule. Nature 121, S. 134 (1928), Nr. 3039.ADSGoogle Scholar
  5. Raymond T. Birge and J. J. Hopfield, The Theoretical Relation Between Infrared and Ultraviolet Bands. Phys Rev (2) 30, S. 365 (1927), Nr. 3.Google Scholar
  6. Raymond T. Birge, Tables of Constants For Diatomic Molecules, Derived From Band Spectra Data. Phys Rev (2) 31, S. 919 (1928), Nr. 5.Google Scholar
  7. K. F. Bonhoeffer, U. P. Harteck, Die Eigenschaften Des Parawasserstof fs. Z F Elektrochem 35, S. 621 (1929), Nr. 9.Google Scholar
  8. K. F. Bonhoeffer U. P. Harteck, Über Para-Und Orthowasserstof f. Z F Phys Chem (B) 4, S. 113 (1929), Nr. 1/2.Google Scholar
  9. K. F. Bonhoeffer U. P. Harteck, Über Para-Und Orthowasserstof f. Z F Phys Chem (B) 5, S. 292 (1929), Nr. 3/4.Google Scholar
  10. M. Born U. R. Oppenheimer, Zur Quantentheorie Der Molekeln. Ann D Phys (4) 84, S. 457 (1927), Nr. 20.ADSGoogle Scholar
  11. P. Debye, Die Elektrischen Momente Der Molekeln Und Die Zwischenmolekularen Kräfte. Z F Elektrochem 34, S. 450 (1928), Nr. 9.Google Scholar
  12. G. H. Dieke, Properties of the Terms of the Helium Molecule. Nature 123, S. 716 (1929), Nr. 3106.ADSGoogle Scholar
  13. A. Eucken, Der Nachweis Einer Umwandlung Der Antisymmetrischen Wasserstof fmolekül-Art In Die Symmetrische. Naturwiss 17, S. 182 (1929), Nr. 11.Google Scholar
  14. A. Eucken U. K. Hiller, Der Nachweis Einer Umwandlung Des Orthowasserstof fs In Para-Wasserstof f Durch Messung Der Spezifischen Wärme. Z F Phys Chem (B) 4, S. 142 (1929), Nr. 1/2.Google Scholar
  15. K. Fajans, Deformation Von Ionen Und Molekülen Auf Grund Refraktometrischer Daten. Z F Elektrochem 34, S. 502 (1928), Nr. 9.Google Scholar
  16. Gerhard Herzberg, Zum Aufbau Der Zweiatomigen Moleküle. Z F Phys 57, S. 601 (1929), Nr. 9/10.ADSGoogle Scholar
  17. Elmer Hutchisson, The Molecular Heat and Entropy of Hydrogen Chloride Calculated From Band Spectra Data. J Am Chem Soc 50, S. 1895 (1928), Nr. 7.Google Scholar
  18. H. H. Hyman and R. T. Birge, Molecular Constants of Hydrogen. Nature 123 (1929), Nr. 3095.Google Scholar
  19. Edwin C. Kemble and C. Zener, Computation of Properties of Certain Excited States of H2. Phys Rev (2) 33, S. 286 (1929), Nr. 2.Google Scholar
  20. Edwin C. Kemble and C. Zener, The Two Quantum Excited States of the Hydrogen Molecule. Phys Rev (2) 33, S. 512 (1929), Nr. 4.ADSGoogle Scholar
  21. Edwin C. Kemble and V. Guillemin Jr., Note On The Lyman Bands of Hydrogen. Wash Nat Acproc 14, 782 (1928), Nr. 10.ADSGoogle Scholar
  22. Edwin C. Kemble, Recent Progress in The Theory of Band Spectra. J Frankl Instit 206, S. 27 (1928), Nr. 1.Google Scholar
  23. Edwin C. Kemble, The Excited States of the H2 Molecule. Phys Rev (2) 31, S. 1131 (1928), Nr. 6.Google Scholar
  24. R. De L. Kronig, Nieuwe Resultaten Van De Theorie Der Bandenspectra. Physica 9, S. 81 (1929), Nr. 3.MathSciNetGoogle Scholar
  25. L. Landau, Zur Theorie Der Spektren Der Zweiatomigen Moleküle. Z F Phys 40, S. 621 (1926), Nr. 8.ADSGoogle Scholar
  26. H. Ludloff, Beitrag Zur Quantenmechanik Der Moleküle. Z F Phys 55, S. 304 (1929), Nr. 5/6.ADSGoogle Scholar
  27. A. Magnus, Über Die Dipolnatur Adsorbierender Gasmolekeln. Z F Elektrochem 34, S. 531 (1928), Nr. 9.Google Scholar
  28. R. Mecke, Bandenspektren Und Periodisches System Der Elemente. Z F Phys 42, S. 390 (1927), Nr. 5/6.ADSGoogle Scholar
  29. Philip M. Morse, Vibrational Levels and Potential Energies of Diatomic Molecules. Phys Rev 787 (2) 33, S. 1091 (1929), Nr. 6.ADSGoogle Scholar
  30. Robert S. Mulliken, The Electronic States of the Helium Molecule. Wash Nat Ac Proc 12, S. 158 (1926), Nr. 3.ADSGoogle Scholar
  31. Linus Pauling, Die Anwendung Der Quantenmechanik Auf Die Struktur Des Wasserstof f-Moleküls, Des Wasserstof fmolekülions Und Verwandte Probleme. Chem Rev 5 S. 173 (1928), Nr. 3.Google Scholar
  32. O. W, Richardson and P. M. Davidson, The Energy Functions of the H2 Molecule. London Rs proc (A) 125, S. 23 (1929), Nr. 796.ADSGoogle Scholar
  33. Jenny E. Rosenthal and F. A. Jenkins, Perturbations In Band Spectra. Phys Rev (2) 33 S. 285 (1929), Nr. 2. Wash Nat Ac Proc 15, S. 381 (1929), Nr. 5. Wash Nat Ac Proc 15, S. 896 (1929), Nr. 12.Google Scholar
  34. J. Sugiura, Über Die Eigenschaften Des Wasserstof fmoleküls Im Grundzustand. Z F Phys 45, S. 484 (1927), Nr. 7/8.ADSGoogle Scholar
  35. J. K. Syrkin, Zur Frage Der Dimensionen Zweiatomiger Moleküle. Z F Phys Chem (B) 5, S. 156 (1929), Nr. 2.Google Scholar
  36. Eduard Teller, Über Das Wasserstof fmolekülion. Z F Phys 61, S. 458 (1920), Nr. 7/8.Google Scholar
  37. Eduard Teller, Berechnung Der Angeregten Zustände Des Wasserstof fmolekülions. Phys Z 31, S. 357 (1930), Nr. 8.Google Scholar
  38. H. C. Urey, The Structure of the Hydrogen Molecule Ion. Phys Rev (2) 27, S. 800 (1926), Nr. 6.Google Scholar
  39. J. H. Van Yleck and Amelia Frank, The Mean Square Angular Momentum and Diamagnetism of the Normal Hydrogen Molecule. Wash Nat Ac Proc 15, S. 539 (1929), Nr. 7.ADSGoogle Scholar
  40. S. C. Wang, The Problem of the Normal Hydrogen Molecule. Phys Rev (2) 31, S. 150 (1928), Nr. 1.Google Scholar
  41. W. Weizel, Über Die Banden Des Lithiumhydrids Und Lithiums. Z F Phys 60, S. 599 (1930), Nr. 9/10.ADSGoogle Scholar
  42. W. Weizel, Die Elektronenterme Des Singulettsystems Im Viellinienspektrum Des Wasserstof fs. Z F Phys 55, S. 483 (1929), Nr. 7/8.ADSGoogle Scholar
  43. Rupert Wildt, Über Die, Absorptionsbanden Der Fixsternspektren. Z F Phys 54, S. 856 (1929), Nr. 11/12.ADSGoogle Scholar
  44. Adolfo T. Williams, La Structure Des Molécules De N2, O2 et F2. J Chim Phys 26, S. 327 (1929), Nr. 6.Google Scholar
  45. A. H. Wilson, The Ionised. Hydrogen Molecule. London R S Proc (A) 118, S. 635 (1928), Nr. 78O.ADSGoogle Scholar
  46. J. G. Winans and R. C. G. Stueckelberg, The Origin of the Continuous Spectrum of the Hydrogen Molecule. Wash Nat Ac Proc 14, S. 867 (1928), Nr. 11.zbMATHADSGoogle Scholar

Bindung

  1. J. Franck, Energiestufen Von Atomen Und Molekülen Und Ihre Beziehung Zur Chemischen Bindung. Chem Ber 61, S. 445 (1928), Nr. 3.Google Scholar
  2. J. Franck, Bandenspektren Und Chemische Bindung. Helv Phys Acta 2, S. 284 (1929), Nr. 4.Google Scholar
  3. J. Frenkel, Zur Heitler-LoIIdonschen Theorie Der Homöopolaren Moleküle. Phys Z 30, S. 716 (1929), Nr. 4.Google Scholar
  4. W. Heitler U. F. London, Wechselwirkung Neutraler Atome Und Homöopolarer Bindung Nach Der Quantenmechanik. Z F Phys 44, S. 455 (1927), Nr. 6/7.ADSGoogle Scholar
  5. W. Heitler, Elektronenaustausch Und Molekülbildung. Göttinger Nachr 1927, S, 368, Nr. 4.Google Scholar
  6. W. Heitler, Zur Quantentheorie Der Chemischen Bindung Bei Mehratomigen Molekülen. Yerh D Phys Ges (3) 10, S. 11 (1929) Nr. 1.Google Scholar
  7. W. Heitler, Zur Gruppentheorie Der Homöopolaren Chemischen Bindung. Z F Phys 47, S. 835 (1928), Nr. 11/12.ADSGoogle Scholar
  8. W. Heitler u. G. Herzberg, Eine Spektroskopische Bestätigung Der Quantenmechanischen Theorie Der Homöopolaren Bindung. Z F Phys 53, S. 52 (1929), Nr. 1/2.ADSGoogle Scholar
  9. F. Hund, Quantenmechanik Und Chemische Bindung. Z F Elektrochem 34, S. 437 (1928), Nr. 9.Google Scholar
  10. F. Hund, Molekelbau Und Chemische Bindung, Phys Z 29, S. 851 (1928), Nr. 22.Google Scholar
  11. Egil A. Hylleraas, Homöopolare Bindung Beim Angeregten Wasserstof fmolekül. Z F Phys 51, S. 150 (1928), Nr. 1/2.ADSGoogle Scholar
  12. Hans Lessheim, Zur Quantentheorie Der Molekülbildung. Z F Phys 51, S. 828 (1928), Nr. ll/12 u. Naturwiss 16, S. 578 (1928), Nr. 29.ADSGoogle Scholar
  13. Hans Lessheim u. R. Samuel, Zur Systematik Der Bindungstypen Zweiatomiger Moleküle. Naturwiss 17, S. 827 (1929),. Nr. 42.ADSGoogle Scholar
  14. Hans Lessheim u. R. Samuel, Zur Systematik Der Bindungstypen Zweiatomiger Moleküle. Z F Phys 62, S. 208 (1930), Nr. 3/4.ADSGoogle Scholar
  15. F. London, Über Den Mechänismus Der Homöopolaren Bindung. Probleme Der Modernen Physik (Sommerfeld-Festschrift), S. 104, (1928).Google Scholar
  16. F. London, Zur Quantentheorie Der Homöopolaren Valenzzahlen. Z F Phys 46, S. 455 (1928), Nr. 7/8.ADSGoogle Scholar
  17. F. London, Zur Quantenmechanik Der Homöopolaren Valenzchemie. Z F Phys 50, S. 24 (1928), Nr. 1/2.ADSGoogle Scholar
  18. H. Ludloff, Molekülbildung Und Bandenspektren. Z F Phys 39, S. 528 (1926), Nr. 7/8.ADSGoogle Scholar
  19. H. Ludloff, Molekülbildung Und Molekülstruktur. Verh D Phys Ges (3) 8, S. 7 (1927), Nr. 1.Google Scholar
  20. H. Ludloff, Zum Aufbau Der Moleküle. Naturwiss 15, S. 409 (1927), Nr. 18.ADSGoogle Scholar
  21. H. Ludloff, Abschattierung Und Austauschentartung. Naturwiss 16, S. 611, (1928) Nr. 31.ADSGoogle Scholar
  22. R. Samuel, Unpolare Bindung Und Atomrefraktion. Z F Phys 49, S. 95 (1928), Nr. 1/2.ADSGoogle Scholar
  23. R. Samuel, Unpolare Bindung Und Atomrefraktion. II. Z F Phys 53, S. 380 (1929), Nr. 5/6.ADSGoogle Scholar
  24. Louis A. Turner, Molecular Binding and Low 5S Terms of N+ and C. Wash Nat Ac Proc 15, S. 526 (1929), Nr. 6.ADSGoogle Scholar

Elektronenbewegung, Elektronenterme

  1. Edw. U. Condon, Nuclear Motions Associated With Electron Transitions In Diatomic,Molecules.. Phys Rev (2) 33, S. 122 (1929), Nr. 1.Google Scholar
  2. Erik Hallén, Über Die Gequantelte Bewegung Eines Zweiatomigen Moleküls Im Kramers-Schen Molekülmodell. Z F Phys 35, S. 642 (1926), Nr. 8/9.ADSGoogle Scholar
  3. Erik Hulthén, Feinstruktur Und Elektronenterme Einiger Bandenspektren. Z F Phys 45, S. 331 (1927), Nr. 5/6.ADSGoogle Scholar
  4. Erik Hulthén, Über Nicht Kombinierende Teilsysteme In Den Bandenspektren. Z F Phys 46, S. 349 (1928), Nr. 5/6.ADSGoogle Scholar
  5. Erik Hulthén, Electronic States In Hydride Molecules. Ark Mat Astr Fys (B) 21, Nr. 5, S. 55 (1929), Heft 3.Google Scholar
  6. F. Hund, Zur Deutung Einiger Erscheinungen In Den Molekelspektren. Z F Phys 36, S. 657 (1926) Nr. 9/10.ADSGoogle Scholar
  7. F. Hund, Fortschritte Der Systematik Und Theorie Der Molekelspektren. Phys Z 28, S. 779 (1927), Nr, 22.Google Scholar
  8. F. Hund, Symmetriecharaktere Von Termen Bei Systemen Mit Gleichen Partikeln In Der Quantenmechanik. Z F Phys 43, S. 788 (1927), Nr. 11/12.ADSGoogle Scholar
  9. F. Hund, Zur Deutung Der Molekelspektren. I. Z F Phys 40, S. 742 (1927), Nr. 10.ADSMathSciNetGoogle Scholar
  10. F. Hund, Zur Deutung Der Molekelspektren. II. Z F Phys 42, S. 93 (1927), Nr. 2/3.ADSGoogle Scholar
  11. F. Hund, Zur Deutung Der Molekelspektren. III. Bemerkungen Über Das Schwingungs-Und Rotationsspektrum Bei Molekeln Mit Mehr Als Zwei Kernen. Z F Phys 43, S. 805 (1927), Nr. 11.ADSGoogle Scholar
  12. F. Hund, Zur Deutung Der Molekelspektren. Iv. Z F Phys 51, S. 759 (1928), Nr. 10.ADSGoogle Scholar
  13. F. Hund, Zur Deutung Der Molekelnspektren. V. Die Angeregten Elektronenterme Von Molekeln Mit Zwei Gleichen Kernen (H2, He2, Li2, N+2, N2…). Z f Phys 63, S. 719 (1930), Nr. 11/12.ADSGoogle Scholar
  14. Edwin C. Kemble, The Rotational Distortion of Multiplet Electronic States In Band Spectra. Phys Rev (2) 30, S. 387 (1927), Nr. 4.ADSGoogle Scholar
  15. H. A. Kramers, Zur Struktur Der Multiplett-S-Zustände In Zweiatomigen Molekülen. I. Zf Phys 53, S. 422 (1929), Nr. 5/6.ADSGoogle Scholar
  16. H. A. Kramers, Zur Aufspaltung Von Multiplett-S-Termen In Zweiatomigen Molekülen. II. Z F Phys 53, S. 429 (1929), Nr. 5/6.ADSGoogle Scholar
  17. R. Del. Kronig, Zur Deutung Der Bandenspektren. Zf Phys 46, S. 814 (1928), Nr. 11/12.ADSGoogle Scholar
  18. R. De L. Kronig, Zur Deutung Der Bandenspektren. II. Z F Phys 50, S. 347 (1928), Nr. 5/6.ADSGoogle Scholar
  19. Hans Lessheim, Über Den Elektronendrehimpuls Rotierender Moleküle. Z F Phys 35, S. 831 (1926), Nr. 11/12.Google Scholar
  20. Lucy Mensing, Die Rotationsschwingungsbanden Nach Der Quantenmechanik. Z F Phys 36, S. 814 (1926), Nr. 11/12.ADSGoogle Scholar
  21. Robert S. Mulliken, Electronic States and Band Spectrum In Diatomic Molecules. I. Statement of the Postulates. Interpretation of Cuh, Ch and Co Band Types. Phys Rev (2) 28, S. 481 (1926), Nr. 3.ADSGoogle Scholar
  22. Robert S. Mulliken, Electronic States and Band Spectrum Structure In Diatomic Molecules. II. Spectra Involving Terms Essentially of the Form B (j2-o2). Phys Rev (2) 28, S. 1202 (1926), Nr. 6.ADSGoogle Scholar
  23. Robert S. Mulliken, Systematic Relations Between Electronic Structure and Band Spectrum Structure In Diatomic Molecules. III. Molecule Formation and Molecular Structure. Wash Nat Ac Proc 12, S. 338 (1926), Nr. 5.ADSGoogle Scholar
  24. Robert S. Mulliken, Electronic States and Band Spectrum Structure In Diatomic Molecules. III. Intensity Relations. Phys Rev (2) 29, S. 391 (1927), Nr. 3.ADSGoogle Scholar
  25. Robert S. Mulliken, Electronic States and Band Spectrum Structure In Diatomic Molecules. Iv. Hund’S Theory: Second Positive Nitrogen and Swan Bands; Alternating Intensities. Phys Rev (2) 29, S. 637 (1927), Nr. 5.ADSGoogle Scholar
  26. Robert S. Mulliken, Band Structure and Intensities, Atomic and Molecular Electronic States, In Diatomic Hydrides. Phys Rev (2) 29, S. 921 (1927), Nr. 6.Google Scholar
  27. Robert S. Mulliken, Electronic States and Band Spectrum Structure In Diatomic Molecules. V. Bands of the Violet Cn (2S → 2S) type. Phys Rev (2) 30, S. 138 (1927), Nr. 2.ADSGoogle Scholar
  28. Robert S. Mulliken, Electronic States and Band Spectrum Structure In Diatomic Molecules. Vi. Theory of Intensity Relations For Case B Doublet States. Interpretations of Ch Bands λ 3900, 4300. Phys Rev (2) 30, S. 785 (1927), Nr. 6.ADSGoogle Scholar
  29. Robert S. Mulliken, Electronic States In Diatomic Molecules. Phys Rev (2) 31, S. 705 (1928), Nr. 4.Google Scholar
  30. Robert S. Mulliken, The Assignment of Quantum Numbers For Electrons In Molecules. I. Phys Rev (2) 32, S. 186 (1928), Nr. 2.ADSGoogle Scholar
  31. Robert S. Mulliken, The Assignment of Quantum Numbers For Electrons In Molecules. II. Correlation of Molecular and Atomic States. Phys Rev (2) 32, S. 761, (1928), Nr. 5.ADSGoogle Scholar
  32. Robert S. Mulliken, Electronic States and Band Spectrum Structure In Diatomic Molecules. VII. 2P → 2S and 2S 2P Transitions. Phys Rev (2) 32, S. 388 (1928), Nr. 3.ADSGoogle Scholar
  33. Robert S. Mulliken, Formation of M H Molecules; Effects of H Atom and M Atom. Phys Rev (2) 33, S. 285 (1929), Nr. 2.Google Scholar
  34. Robert S. Mulliken, Electronic States and Band Spectrum Structure In Diatomic Molecules. VIII. Some Empirical Relations In O-Type Doubling. Phys Rev (2) 33, S. 507 (1929), Nr. 4.ADSGoogle Scholar
  35. Robert S. Mulliken, The Assignment of Quantum Numbers For Electrons In Molecules. III. Diatomic Hydrides. Phys Rev (2) 33, S. 730 (1929), Nr. 5.ADSGoogle Scholar
  36. Robert S. Mulliken, The Interpretation of Band Spectra. Parts I, IIa, IIb. Rev Modern Phys 2, S. 60 (1930), Nr. 1.zbMATHADSGoogle Scholar
  37. J. H. Van Vleck and R. S. Mulliken, On the Widths of O-Type Doublets In Molecular Spectra. Phys Rev (2) 32, S. 327 (1928), Nr. 2.Google Scholar
  38. J. H. Van Vleck, On Ö-Type Doubling and Electron Spin in the Spectra of Diatomic Molecules. Phys Rev (2) 33, S. 467 (1929), Nr. 4.ADSGoogle Scholar
  39. W. Weizel, Entkopplung Des Elektronenbahndrehimpulses Von Der Molekülachse Durch Die Rotation Bei He2. Z F Phys 52, S. 175 (1928), Nr. 3/4.ADSGoogle Scholar
  40. W. Weizel, Über Doppelte Rotationstermfolgen Von Singulett-X-Termen. Zfphys 61, S. 602 (1930), Nr. 9/10.ADSGoogle Scholar

II. Dissoziation, Prädissoziation

  1. J. Franck, Bandenspektrum Und Chemische Bindung. Atti Congr Intern Dei Fisici Como 1927 Bd. I, S. 65 (1928), Nr. 1.Google Scholar
  2. J. Franck U. H. Sponer, Beitrag Zur Bestimmung Der Dissoziationsarbeit Von Molekülen Aus Bandenspektren. Göttinger Nachr 1928, S. 241, Nr. 2.Google Scholar
  3. J. Franck u. H. Sponer, Beitrag Zur Optischen Dissoziation Von Molekülen. Verh D Phys Ges (3) 10, S. 13 (1929), Nr. 3. (Kurzes Referat über die ausführlichen Arbeiten in den Göttinger Nachr).Google Scholar
  4. Victor Henri Et Franz Wolff, Formation, Prédissociation Et Dissociation Des Molécules Déterminées Par Les Spectres De Vibration. Étude Du Monoxyde De Soufre So. J De Phys Et Le Radium (6), 10, S. 81 (1929), Nr. 3.Google Scholar
  5. Gerhard Herzberg, Zur Deutung Der Diffusen Molekülspektren (Prädissoziation). Z f Phys 61, S. 604 (1930), Nr. 9/10.ADSGoogle Scholar
  6. K. W. Kohlrausch, Die Berechnung Der Chemischen Bindekräfte Aus Den Frequenzen Der Ramanlinien. Wiener Anz 1929, S. 287, Nr. 3.Google Scholar
  7. V. Kondratjew u. A. Leipunsky, Zur Frage Nach Der Geschwindigkeit Der Molekülbildung Aus Freien Atomen. Zfphys 56, S. 353 (1929), Nr. 5/6.ADSGoogle Scholar
  8. O. Oldenberg, Über Den Zerfall Von Molekülen Durch Rotation. Z F Phys 56, S. 563 (1929), Nr. 7/8.Google Scholar
  9. Oscar Knefler Rice, The Theory of Diffuse Band Spectra. Phys Rev (2) 33, S. 271 (1929), Nr. 2.MathSciNetGoogle Scholar
  10. Oscar Knefler Rice, Perturbations In Molecules and The Theory of Predissociation and Diffuse Spectra. Phys Rev (2) 33, S. 748 (1929), Nr. 5.Google Scholar
  11. B. Rosen, Über Diffuse Molekülspektra. Zfphys 52, S. 16 (1928), Nr. 1/2.ADSGoogle Scholar
  12. Hermann Senftleben, Nachweis Einer Direkten Durch Bestrahlung Bewirkten Dissoziation Zweiatomiger Gase. Sitzungsberichte Ges Z Bef Ges Naturwiss Zu Marburg 62, S. 419 (1927), Nr. 13.Google Scholar
  13. H. Sponer, Lichtabsorption Und Bindungsart Von Molekülen Der Gase Und Dämpfe. Z F Elektrochem 34, S. 483 (1928), Nr. 9.Google Scholar
  14. G. Stenvinkel, Zur Deutung Einiger Prädissoziationserscheinungen In Bandenspektren. Zfphys 62, S. 201 (1930), Nr. 3/4.ADSGoogle Scholar
  15. A. Terenin, Optische Dissoziation Heteropolarer Moleküle. Naturwiss 15, S. 73 (1927), Nr. 3.ADSGoogle Scholar
  16. D. S. Villars and E. U. Condon, Predissociation of Diatomic Molecules From High Rotational States. Phys Rev (2). 35, S. 1028 (1930), Nr. 9.ADSGoogle Scholar

H

  1. R. T. Birge and O. R. Wulf, Nature of the Molecular Binding and Other Properties of the Hydrogen Halides. Phys Rev (2) 31, S. 917 (1928), Nr. 5.Google Scholar
  2. Egil A. Hylleraas, Homöopolare Bindung Beim Angeregten Wasserstof fmolekül. Z F Phys 51, S. Iso (1928), Nr. 1/2.Google Scholar
  3. Joseph Kaplan, Dissociation of Hydrogen by Collisions of the Second Kind. Nature 123, S. 162 (1929), Nr. 3092.ADSGoogle Scholar
  4. William W. Watson, The Heat of Dissociation of Diatomic Hydride Molecules. Phys Rev (2) 34, S. 372 (1929), Nr. 2.ADSGoogle Scholar
  5. Enos E. Witmer, Critical Potentials and the Heat of Dissociation of Hydrogen As Determined From Its Ultra-Violet Band Spectrum. Phys Rev (2) 28, S. 1223 (1926), Nr. 6.Google Scholar

Alkalien

  1. J. Franck, H. Kuhn U. G. Rollefson, Beziehungen Zwischen Absorptionsspektren Und Chemischer Bindung Bei Alkalihalogeniddämpfen. Z F Phys 43, S. 155 (1927), Nr. 3/4.ADSGoogle Scholar
  2. F. W. Loomis, The Heat of Dissociation of Na2. Phys Rev (2) 31, S. 705 (1928), Nr. 4.Google Scholar

K

  1. A. Cavelli u. Peter Pringsheim, Die Bildungswärme Der Ka-Moleküle. Z F Phys 44, S. 643 (1927), Nr. 9/10.ADSGoogle Scholar
  2. R. W. Vitchburn, The Photo-Electric Threshold and The Heat of Dissociation of the Potassium Molecule. Proc Cambridge Phil Soc 24, S. 320 (1928), Nr. 2.ADSGoogle Scholar

Ag

  1. J. Franck u. H. Kuhn, Über Ein Absorptions-Und Ein Fluoreszenzspektrum Von Silberjodid-Molekülen Und Die Art Ihrer Chemischen Bindung. Z F Phys 43, S. 164 (1927), Nr. 3/4.ADSGoogle Scholar

Zn, Cd, Hg

  1. S. Mrozowski, Dissociation Energy of Zn2 Molecules. Nature 125, S. 528 (1930), Nr. 3153.ADSGoogle Scholar
  2. S. Mrozowski, Über Die Bandenfluoreszenz Und Dissoziationswärme Der Quecksilbermole-Küle. Zf Phys 55, S. 338 (1929), Nr. 5/6.ADSGoogle Scholar
  3. J. G. Winans, Energies of Dissociation of Cadmium and Zinc Molecules. Nature 123, S. 279 (1929), Nr. 3095.ADSGoogle Scholar

C

  1. J. W. Ellis, Heats of Linkage of C-H and N-H Bands From Vibration Spectra. Phys Rev (2) 33, S. 27 (1929), Nr. 1.ADSGoogle Scholar
  2. R. Mecke, The Heat of Dissociation of Oxygen and of the C-H Band. Nature 125, S. 526 (1930), Nr. 3153.ADSGoogle Scholar
  3. Donald Statler Villars, The Heats of Dissociation of the Molecules Ch, Nh, Oh and Hf. J Am Chem Soc 51, S. 2374 (1929), Nr. 8.Google Scholar

N

  1. Raymond T. Birge, The Heat of Dissociation of Nitrogen. Nature 122, S. 842 (1928), Nr. 3083.ADSGoogle Scholar
  2. E. Gaviola, The Nh Band and The Dissociation Energy of Nitrogen. Nature 122, S. 313 (1928), Nr. 3070.ADSGoogle Scholar
  3. Gerhard Herzberg, The Dissociation Energy of Nitrogen. Nature 122, S. 505 (1928), Nr. 3075.ADSGoogle Scholar
  4. Joseph Kaplan, The Heat of Dissociation of Nitrogen. Phys Rev (2) 33, S. 267 (1929), Nr. 2.Google Scholar
  5. R. S. Mulliken, The Heat of Dissociation of Nitrogen. Nature 122, S. 842 (1928), Nr. 3083.ADSGoogle Scholar

O, S

  1. Gerhard Herzberg, Die Dissoziationsarbeit Von Sauerstof f. Z F Phys Chem (B) 4, S. 223 (1929), Nr. 3.Google Scholar
  2. Louis S. Kassel, The Heat of Dissociation of Oxygen. Phys Rev (2) 34, S. 817 (1929), Nr. 5.ADSGoogle Scholar
  3. V. Kondratjew, Die Dissoziationsarbeit Des Sauerstof fs Und Des Schwefels. Z F Phys Chem (B) 7. S. 70 (1930), Nr. 1.Google Scholar
  4. E. C. G. Stueckelberg, Simultaneous Ionization and Dissociation of Oxygen and Intensities of Ultraviolet O2 Bands. Phys Rev (2) 34, S. 65 (1929), Nr. 1.ADSGoogle Scholar

Halogene

  1. K. Butkow u. A. Terenin, Optische Anregung Und Dissoziation Einiger Halogensalze. 791 Zf Phys 49, S. 865 (1928), Nr. 11/12.Google Scholar
  2. K. Butkow, Absorptionsspektren Und Art Der Chemischen Bindung Der Thallohalogenide Im Dampfzustand. Z F Phys 58, S. 232 (1929), Nr. 3/4.ADSGoogle Scholar
  3. G. E. Gibson and H. C. Ramsperger, Band Spectra and Dissociation of Iodine Monochloride. Physrev (2) 30, S. 598 (1927), Nr, 5.ADSGoogle Scholar
  4. G. E. Gibson and O. K. Rice, Diffuse Bands and Predissociation of Iodine Mono Chloride. Nature 123, S. 347 (1929), Nr. 3097.zbMATHADSGoogle Scholar
  5. V. Kondratjew, Zur Frage Der Homöopolarität Der Halogen Wasserstof fe. Z F Phys 48, S. 583 (1928), Nr. 7/8.ADSGoogle Scholar
  6. Allan C. G. Mitchell, Über Die Richtungsverteilung Der Relativgeschwindigkeit Der Zer-Fallsprodukte Bei Optischer Dissoziation Von Jodnatrium. Z F Phys 49, S. 228 (1928), Nr. 3/4.ADSGoogle Scholar
  7. Hermann Senftleben u. Erich Germer, Nachweis Einer Direkten Durch Bestrahlung Be-Wirkten Dissoziation Der Halogenmoleküle. Ann D Phys (5) 2, S. 847 (1929), Nr. 7.ADSGoogle Scholar
  8. Louis A. Turner, The Optical Dissociation of Iodine Vapor. Phys Rev (2) 31, S. 710 (1928), Nr. 4.Google Scholar

III. Intensitäten

  1. Edward Condon, A Theory of Intensity Distribution In Band Systems. Phys Rev (2) 28, S. 1182 (1926), Nr. 6.ADSGoogle Scholar
  2. Elmer Hutchisson, Intensities In Band Spectra. Nature 125, S. 746 (1930), Nr. 3159.ADSGoogle Scholar
  3. Robert S. Mulliken, Intensity Relations and Electronic States In Spectra of Diatomic Molecules. Physrev (2) 29, S. 211 (1927), Nr. 1.Google Scholar
  4. Robert S. Mulliken, Band Structure and Intensities, Atomic and Molecular Electronic States in Diatomic Hydrides. Physrev (2) 29, S. 921 (1927), Nr. 6.Google Scholar
  5. Robert S. Mulliken. Intensity Relations and Band Structure in Bands of the Violet Cn Type. Phys Rev (2) 29, S. 923 (1927), Nr. 6.Google Scholar
  6. L. S. Ornstein u. W. R. Van Wijk, Temperaturbestimmung Im Elektrischen Bogen Aus Dem Bandenspektrum. Proc Amsterdam Ac 33, S. 44 (1930), Nr. 1.Google Scholar
  7. R. Sewig, Intensitätsmessungen In Bandenspektren. Yerh D Phys Ges (3) 6, S. 56 (1925), Nr. 3.Google Scholar
  8. M. C. Teves, Über Druckverbreiterung Von Absorptionsbanden. Z F Phys 48, S. 244 (1928), Nr. 3/4.ADSGoogle Scholar

Na

  1. Carl J. Christensen and G. K. Rollefson, The Influence of the Method of Excitation On Transition Probabilities In Sodium Vapor. Phys Rev (2) 34, S. 1157 (1929), Nr. 8.ADSGoogle Scholar

N

  1. Gerhard Herzberg, Über Die Intensitätsverteilung In Bandenspektren (insbesondere in den Stickstof fbanden). Z f Phys 49, S. 761 (1928), Nr. 11/12.ADSGoogle Scholar
  2. L. S. Ornstein Und W. R. Van Wijk, Untersuchungen Über Das Negative Stickstof fbanden-Spektrum. Zf Phys 49, S. 315 (1928), Nr. 5/6.ADSGoogle Scholar
  3. B. Pogany u. R. Schmidt, Über Die Intensität Der No-Banden. Math-Naturw Anz Budapest 46, S. 677 (1929). (Ungarisch mit deutscher Zusammenfassung.)Google Scholar
  4. F. Rasetti, Alternating Intensities in The Spectrum of Nitrogen. Nature 124, S. 792 (1929), Nr. 3134.ADSGoogle Scholar
  5. R. Schmid, Über Die Intensitätsverhältnisse Der No-Banden. Z F Phys 59, S. 850 (1930), Nr. 11/12.ADSGoogle Scholar
  6. W. R. Van Wijk, Intensity Measurements In The Nitrogen Band Spectrum. Proc Amsterdam Ac 32, S. 1243 (1929), Nr. 9.Google Scholar
  7. W. R. Van Wijk, Intensitätsmessungen Im Bandenspektrum Des Stickstof fs. Z F Phys 59, S. 313 (1930), Nr. 5/6.ADSGoogle Scholar

O

  1. W. H. J. Childs and R. Mecke, Intensities In The Atmospheric Oxygen (Intercombination) bands. Nature 125, S. 599 (1930), Nr. 3155.ADSGoogle Scholar
  2. E. C. G. Stueckelberg, Simultaneous Ionisation and Dissoziation of Oxygen and Intensities of Ultraviolett O+2 Bands. Phys Rev (2) 34, S. 65 (1929), Nr. 1.ADSGoogle Scholar
  3. E. C. G. Stueckelberg, The Explanation of A Critical Potential of Oxygen (O2 O+ + O) and the intensities of the ultra-violet O+2-bands. Phys Rev (2) 33, S. 1091 (1929), Nr. 6.Google Scholar

J

  1. O. Oldenberg, Über Die Intensitätsverteilung In Woods Resonanzserie Des Jodmoleküls. Z F Phys 45, S. 451 (1927), Nr. 7/8.ADSGoogle Scholar

He

  1. W. H. J. Childs, The Distribution of Intensity In The Band Spectrum of Helium: The Band At λ 4650. London Rs Proc (A) 118, S. 296 (1928), Nr. 779.ADSGoogle Scholar

IV. Isotopie

  1. Raymond T. Birge, The Vibrational Isotope Effect. Phys Rev (2) 35, S. 133 (1930), Nr. 1.MathSciNetGoogle Scholar
  2. Robert S. Mulliken, The Vibrational Isotope Effect in the Band Spectrum of Boron Nitride. Science (N. S.) 58, S. 164 (1923), Nr. 1496.Google Scholar

C

  1. Raymond T. Birge, Further Evidence of the Carbon Isotope, Mass 13. Phys Rev (2) 34, S. 379 (1929), Nr. 2.ADSGoogle Scholar
  2. Raymond T. Birge, Further Evidence of the Carbon Isotope, Mass 13. Nature 124, S. 182 (1929), Nr. 3118.ADSGoogle Scholar
  3. Arthur S. King and Raymond T. Birge, An Isotope of Carbon, Mass 13. Phys Rev (2) 34, S. 376 (1929), Nr. 2.ADSGoogle Scholar
  4. Arthur S. King and Raymond T. Birge, An Isotope of Carbon, Mass 13. Nature 124, S. 127 (1929), Nr. 3117.ADSGoogle Scholar
  5. Arthur S. King and Raymond T. Birge, The Carbon Isotope, Mass 13. Phys Rev (2) 35, S. 133 (1930), Nr. 1.Google Scholar

Sn

  1. W. Jevons, A Band Spectrum of Tin Monochloride Exhibiting Isotope Effects. London R S Proc (A) 110, S. 365 (1926), Nr. 754.ADSGoogle Scholar

Pb

  1. Sidney Bloomenthal, Detection of the Isotopes of Lead by Means of their Oxide Band Spectra. Phys Rev (2) 33, S. 285 (1929), Nr. 2.Google Scholar
  2. Sidney Bloomenthal, Detection of the Isotopes of Lead By The Band Spectrum Method. Science (N. S.) 69, S. 229 (1929), Nr. 1782.Google Scholar
  3. Sidney Bloomenthal, Vibrational Quantum Analysis and Isotope Effect for The Lead Oxide Band Spectra. Phys Rev (2) 35, S. 34 (1930), Nr. l.ADSGoogle Scholar

N

  1. S. M. Naudé, An Isotope of Nitrogen, Mass 15. Phys Rev (2) 34, S. 1498 (1929), Nr. 11.ADSGoogle Scholar

O

  1. Harold D. Babcock, The Constitution of Oxygen. Nature 123, S. 761 (1929), Nr. 3107.ADSGoogle Scholar
  2. Harold D. Babcock, Some New Features of the Atmospheric Oxygen Bands and The Relative Abundance of the Isotopes O16, O18. Wash Nat Ac Proc 15, S. 471 (1929), Nr. 6.ADSGoogle Scholar
  3. Harold D. Babcock, Relative Abundance of the Isotopes of Oxygen. Phys Rev (2) 34, S. 540 (1929), Nr. 3.Google Scholar
  4. Raymond T. Birge, The Isotopes of Oxygen. Nature 124, S. 13 (1929), Nr. 3114.ADSGoogle Scholar
  5. W. F. Giauque and H. L. Johnston, An Isotope of Oxygen, Mass 18. Nature 123, S. 318 (1929), Nr. 3096.ADSGoogle Scholar
  6. W. F. Giauque and H. L. Johnston, An Isotope of Oxygen of Mass 17 In The Earth’S Atmosphere. Nature 123, S. 831 (1929), Nr. 3109.ADSGoogle Scholar
  7. W. F. Giauque and H. L. Johnston, An Isotope of Oxygen, Mass 17, In The Earth’S Atmosphere. J Am Chem Soc 51, S. 3528 (1929), Nr. 12.Google Scholar
  8. W. F. Giauque, Isotope Effect In Spectra and Precise Atomic Weights. Nature 124, S. 265 (1929), Nr. 3120.Google Scholar
  9. W. F. Giauque and H. L. Johnston, An Isotope of Oxygen, Mass 18. Interpretation of the Atmospheric Absorption Bands. J Am Chem Soc 51, S. 1436 (1929), Nr. 5.Google Scholar
  10. R. Mecke u. K. Wurm, Das Atomgewicht Des Sauerstof fisotops O18. Z F Phys 61, S. 37 (1930), Nr. 1/2.ADSGoogle Scholar

Cl

  1. A. Elliot, The Isotope Effect In The Spectrum of Chlorine. Nature 122, S. 997 (1928), Nr. 3087.ADSGoogle Scholar

J

  1. G. E. Gibson, Der Isotopeneffekt Der Jodmonochloridbanden In Der Nähe Der Konvergenz. Z F Phys 50, S. 692 (1928), Nr. 9/10.ADSGoogle Scholar

V. Experimentelles. H

  1. H. Stanley Allen and Jan Sandeman, Bands In The Secondary Spectrum of Hydrogen. London Rs Proc (A) 114, S. 293 (1927), Nr. 767.ADSGoogle Scholar
  2. H. Stanley Allen and Jan Sandeman, Bands In The Secondary Spectrum of Hydrogen. II. London R S Proc (A) 116, S. 312 (1927), Nr. 774.ADSGoogle Scholar
  3. H. Beutler, Stöße Zweiter Art Bei Molekülen. (Die Anregung der Lymanbanden und das Nichtkombinieren des symmetrischen mit dem antisymmetrischen Termsystem beim Wasserstof fmolekül.) Z f Phys 50, S. 581 (1928), Nr. 9/10.ADSGoogle Scholar
  4. K. F. Bonhoeffer U. P. Harteck, Experimente Über Para-Und Orthowasserstof f. Berl Sitzber 1929, S. 103, Nr. 6 /7.Google Scholar
  5. D. G. Bourgin, An Approximation Method and Application To Some Hcl Bands. Phys Rev (2) 32, S. 237 (1928), Nr. 2.ADSGoogle Scholar
  6. Charles J. Brasefield, Some Peculiar Hydrogen Bands. Phys Rev (2) 33, S. 925 (1929) Nr. 6.ADSGoogle Scholar
  7. Brooks A. Brice and F. A. Jenkins, A New Ultra-Violet Band Spectrum of Hydrogen Chloride. Nature 123, S. 944 (1929), Nr. 3112.ADSGoogle Scholar
  8. Brooks A. Brice and F. A. Jenkins, A New Band System Probably Due To Singly Ionized Hcl. Phys Rev (2) 33, S. 1090 (1929), Nr. 6.Google Scholar
  9. W. E. Curtis, The Fulcher Hydrogen Bands. London R S Proc (A) 107, S. 570 (1925), Nr. 743.ADSGoogle Scholar
  10. Panchenon Das, Über Das Viellinienspektrum Des Wasserstof fs. Z F Phys 59, S. 243 (1929), Nr. 3/4.ADSGoogle Scholar
  11. D. B. Deodhear, Supplementary Table of Wave-Lengths of New Lines In The Secondary Spectrum of Hydrogen. London R S Proc (A) 113, S. 420 (1926), Nr. 764.ADSGoogle Scholar
  12. D. B. Deodhear, New Bands In The Secondary Spectrum of Hydrogen. Phil Mag (7) 6, S. 466 (1928), Nr. 36.Google Scholar
  13. D. B. Deodhear, New Bands In The Secondary Spectrum of Hydrogen. Part II. Phil Mag (7) 9, S. 37 (1930), Nr. 55.Google Scholar
  14. G. H. Dieke and J. J. Hopfield, The Structure of the Ultra-Violet Spectrum of the Hydrogen Molecule. Phys Rev (2) 30, S. 400 (1927), Nr. 4.ADSGoogle Scholar
  15. G. A. Dieke, Die Terme Des Wasserstof fmoleküls. (Kurze Mitteilung. ) Z f Phys 55, S. 447 (1929), Nr. 7/8.ADSGoogle Scholar
  16. Wolfgang Finkelnburg, Über Das Molekülspektrum Des Wasserstof fs. Verh D Phys Ges (3) 9, S. 35 (1928), Nr. 2.Google Scholar
  17. Wolfgang Finkelnburg u. R. Mecke, Die Bandensysteme Im Molekülspektrum Des Wasserstof fs. Feil I. Das Singulettsystem. Z F Phys 54, S. 198 (1929), Nr. 3/4.ADSGoogle Scholar
  18. Wolfgang Finkelnburg U. R. Mecke, Die Bandensysteme Im Molekülspektrum Des Wasserstof fs. Teil II. Das Triplettsystem. Z F Phys 54, S. 597 (1929), Nr. 9/10.ADSGoogle Scholar
  19. H. G. Gale, G. S. Monk and R. O. Lee, Measurement of Wave-Lengths In The Secondary Spectrum of Hydrogen Between 3394 A and 8902 A. Phys Rev (2) 31, S. 309 (1928), Nr. 2.Google Scholar
  20. J. J. Hopfield and G. H. Dieke, Absorption Spectrum of the Hydrogen Molecule. Nature 118, S. 592 (1926), Nr. 2973.ADSGoogle Scholar
  21. J. J. Hopfield, New Data On H2 Absorption. Phys Rev (2) 31, S. 918 (1928), Nr. 5.Google Scholar
  22. Takeo Hori, Über Die Analyse Des Wasserstof fbandenspektrums Im Äußersten Ultraviolett. Z F Phys 44, S. 834 (1927), Nr. 11/12.ADSGoogle Scholar
  23. David Jack, The Band Spectrum of Water Vapour. London R S Proc (A) 115, S. 373 (1927), Nr. 771. II. Ebenda 118, S. 647 (1928), Nr. 780. III. Ebenda 120, S. 222 (1928), Nr. 784.ADSGoogle Scholar
  24. E. B. Ludlam, Band Spectrum of Chlorine Or Hydrogen Chloride. Nature 123, S. 414 (1929), Nr. 3098.ADSGoogle Scholar
  25. J. C. Mclennan, H. Grayson-Smith and W. T. Collins, Intensities In The Secondary Spectrum of Hydrogen At Various Temperatures. London R S Proc (A) 116, S. 277 (1927), Nr. 774.ADSGoogle Scholar
  26. J. C. Mclennan, R. Ruedy and A. C. Burton, An Investigation of the Absorption Spectra of Water and Ice, With Reference To The Spectra of the Major Planets. London R S Proc (A) 120, S. 296 (1928), Nr. 785.ADSGoogle Scholar
  27. R. Mecke u. W. Finkelnburg, Die Bandensysteme Des Wasserstof fmoleküls. Naturwiss 17, S. 255 (1929), Nr. 16.ADSGoogle Scholar
  28. Charles F. Meyer and Aaron A. Levin, On The Absorption Spectrum of Hydrogen Chloride. Phys Rev (2) 34 (1929), Nr. 1.Google Scholar
  29. G. S. Monk and A. E. Elo, New Bands In The Secondary Spectrum of Hydrogen. Phys Rev (2) 33, S. 114 (1929), Nr. l.Google Scholar
  30. Giorgio Piccardi, Molecular Hydrogen In Sunspots. Nature 122, S. 880 (1928), Nr. 3084.ADSGoogle Scholar
  31. A. H. Poetker, The Infra-Red Spectrum of Hydrogen. Nature 119, S. 123 (1927), Nr. 2986.ADSGoogle Scholar
  32. O. W. Richardson, Structure In The Secondary Hydrogen Spectrum. Part II. London Rs Proc (A) 108, S. 553 (1925), Nr. 748.ADSGoogle Scholar
  33. O. W. Richardson, Structure In The Secondary Hydrogen Spectrum. Part III. London Rs Proc (A) 109, S. 239 (1925), Nr. 750.ADSGoogle Scholar
  34. O. W. Richardson, Structure In The Secondary Hydrogen Spectrum. Part IV. London Rs Proc (A) 111, S. 714 (1926), Nr. 759.ADSGoogle Scholar
  35. O. W. Richardson, Note On A Connection Between The Visible and Ultraviolet Bands of Hydrogen. London R S Proc (A) 114, S. 643 (1927), Nr. 769.ADSGoogle Scholar
  36. O. W. Richardson, The Hydrogen Band Spectrum: New Band Spectrum In The Violet. London R S Proc (A) 115, S. 528 (1927), Nr. 772.ADSGoogle Scholar
  37. O. W. Richardson, The Band Spectrum of Hydrogen. Atti Congr Intern Dei Fisici Como-Paviaroma, Sept. 1927, I I.Google Scholar
  38. O. W. Richardson, The Hydrogen Molecule. Nature 121, S. 320 (1928), Nr. 3044.ADSGoogle Scholar
  39. O. W. Richardson and P. M. Davidson, The Spectrum of the Hydrogen Molecule. Nature 121, S. 1018 (1928), Nr. 3061.ADSGoogle Scholar
  40. O. W. Richardson and K. Das, The Spectrum of H2: The Bands Analogous To The Orthohelium Line Spectrum. London R S Proc (A) 122, S. 688 (1929), Nr. 790.ADSGoogle Scholar
  41. O. W. Richardson and P. M. Davidson, The Spectrum of H2: The Bands Analogous To The Parhelium. Line Spectrum. Part I. London R S Proc (A) 123, S. 54 (1929), Nr. 791.Google Scholar
  42. O. W. Richardson and P. M. Davidson, The Spectrum of H2: The Bands Analogous To The Parhelium Line Spectrum. Part II. London R S Proc (A) 123, S. 466 (1929), Nr. 792.ADSGoogle Scholar
  43. O. W. Richardson and P. M. Davidson, The Spectrum of H2: The Bands Analogous To The Parhelium Line Spectrum. Part III. London R S Proc (A) 124, S. 50 (1929), Nr. 793.Google Scholar
  44. O. W. Richardson and P. M. Davidson, The Spectrum of H2: The Bands Analogous To The Parhelium Line Spectrum. Part IV. London R S Proc (A) 124, S. 69 (1929), Nr. 793.ADSGoogle Scholar
  45. O. W. Richardson and K. Das, The Spectrum of H2: The Bands Analogous To The Ortho helium Line Spectrum. London R S Proc (A) 125, S. 309 (1929), Nr. 797.Google Scholar
  46. O. W. Richardson and K. Das, The Spectrum of H2: The Bands Analogous To The Orthohelium Line Spectrum. Part II-London R S Proc (A) 125, S. 309 (1929), Nr. 797.Google Scholar
  47. O. W. Richardson, A New Connection Between The Absorption Spectrum of Hydrogen and The Many-Lined Spectrum. London R S Proc (A) 126, S. 487 (1930), Nr. 802.Google Scholar
  48. Jan Sandeman, The Fulcher Bands of Hydrogen. Proc Rs Edinburgh 49, S. 48 (1928/29), Nr. 1.Google Scholar
  49. Jan Sandeman, Bands In Hydrogen Related To The Fulcher System. Proc R S Edinburgh 49, S. 245 (1929), Nr. 20.Google Scholar
  50. Jan Sandeman, The Fulcher Bands of Hydrogen. Nature 123, S. 410 (1929), Nr. 3098.ADSGoogle Scholar
  51. A. Schaafsma u. G. H. Dieke, Über Die Ultravioletten Banden Des Wasserstof fmoleküls. Zf Phys 55, S. 164 (1929), Nr. 3/4.ADSGoogle Scholar
  52. L. A. Sommer, Absorption Experiments On Excited Molecular Hydrogen. Nature 120, S. 841 (1927), Nr. 3032.ADSGoogle Scholar
  53. William Mayo Venable, Classification of Lines of the Secondary Spectrum of Hydrogen. J Opt Soc Am 14, S. 141 (1927), Nr. 2.Google Scholar
  54. S. C. Wang, The Problem of the Normal Hydrogen Molecule In The New Quantum Mechanics. Phys Rev (2) 31, S. 579 (1928), Nr. 4.ADSGoogle Scholar
  55. W. Weizel, Bandenspektren Leichter Moleküle. I. Das Spektrum Von He2 Und H2. Z F Phys 56, S. 727 (1929), Nr. 11/12.ADSGoogle Scholar
  56. Sven Werner, Hydrogen Bands In The Ultra-Violet Lyman Region. London R S Proc (A) 113, S. 107 (1926), Nr. 763.ADSGoogle Scholar

Alkalien

  1. L. A. Müller, Absorptionsspektren Der Alkalihalogenide In Wässeriger Lösung Und Im Dampf. Ann D Phys (4) 82, S. 39 (1927), Nr. 1.Google Scholar
  2. Franz Urbach, Über Lumineszenz Der Alkalihalogenide. Verh D Phys Ges (3) 8, S. 17 (1927), Nr. 2.Google Scholar
  3. W. Weizel u. M. Kulp, Über Die Bandensysteme Der Alkalidämpfe. Ann D Phys (5) 4, S. 971 (1930), Nr. 7.ADSGoogle Scholar

Li

  1. A. Harvey and F. A. Jenkins, Alternating Intensities In The Absorption Bands of Li2. Phys Rev (2) 34, S. 1286 (1929), Nr. 9.ADSGoogle Scholar
  2. A. Harvey and F. A. Jenkins, The Blue-Green Absorption Bands of Li2. Phys Rev (2) 35, S. 132 (1930), Nr. l.Google Scholar
  3. Gisaburo Nakamura, Das Absorptionsspektrum Des Lithiumhydrids Und Die Molekularen Konstanten Des Lih. Z F Phys Chem (B) 3, S. 80 (1929), Nr. 1.Google Scholar
  4. Gisaburo Nakamura, Das Bandenspektrum Des Lithiumhydrids. Z F Phys 59, S. 218 (1929), Nr. 3/4.ADSGoogle Scholar
  5. K. Wurm, Über Das Bandenspektrum Des Lithiums. Naturwiss 16, S. 1028 (1928), Nr. 48.ADSGoogle Scholar
  6. K. Wurm, Über Die Rotationsstruktur Der Blaugrünen Lithiumbanden. Z F Phys 58, S. 562 (1929), Nr. 7/8.ADSGoogle Scholar
  7. K. Wurm, Über Die Struktur Der Roten Lithiumbanden. Z F Phys 59, S. 35 (1929), Nr. 1/2.ADSGoogle Scholar

Na

  1. W. R. Fredrickson and William W. Watson, The Sodium and Potassium Absorption Bands. Phys Rev (2) 30, S. 429 (1927), Nr. 4.ADSGoogle Scholar
  2. W. R. Fredrickson, Magnetic Rotation Lines In The Red Sodium Bands. Phys Rev (2) 31, S. 1130 (1928), Nr. 6.Google Scholar
  3. W. R. Fredrickson, Rotational Structure of the Red Na2 Bands. Phys Rev (2) 34, S. 207 (1929) Nr. 2.ADSGoogle Scholar
  4. Hans-Hermann Hupfeld, Die Nachleuchtdauer Der J2-, K2-, Na2-Und Na-Resonanzstrahlung. Z F Phys 54, S. 484 (1929), Nr. 7/8.ADSGoogle Scholar
  5. E. H. Johnson, The Many-Lined Spectrum of Sodium Hydride. Phys Rev (2) 29, S. 85 (1927), Nr. 1.ADSGoogle Scholar
  6. E. L. Kinsey, The Excitation of the D Lines By The Green Sodium Band. Nature 121, S. 904 (1928), Nr. 3058.ADSGoogle Scholar
  7. E. L. Kinsey, Note On The D Line Excitation By The Green Sodium Band and The Dissociation Potential of Sodium Vapor. Wash Nat Ac Proc 15, S. 37 (1929), Nr. 1.ADSGoogle Scholar
  8. F. W. Loomis, Vibrational Levels In The Blue-Green Band System of Sodium. Phys Rev (2) 29, S. 607 (1927), Nr. 4.Google Scholar
  9. F. W. Loomis and S. W. Nile Jr., New Features of the Red Band System of Na2. Phys. Rev (2) 31, S. 1135 (1928), Nr. 6.Google Scholar
  10. F. W. Loomis and S. W. Nile Jr., New Features of the Red Band System of Sodium. Phys Rev (2) 32, S. 873 (1928), Nr. 6.ADSGoogle Scholar
  11. F. W. Loomis and R. W. Wood, The Rotational Structure of . The Blue-Green Bands of Na2. Phys Rev (2) 32, S. 223 (1928), Nr. 2.ADSGoogle Scholar
  12. Peter Pringsheim u. E. Rosen, Über Molekülspektra Des Kaliums, Natriums Und K-Na-Gemisches. Z F Phys 43, S. 519 (1927), Nr. 8.ADSGoogle Scholar
  13. R. Ritschl and U. D. Villars, Bandenspektren Und Elektronenterme Der Moleküle Na2, Nak Und K2. Naturwiss 16, S. 219 (1928), Nr. 13.ADSGoogle Scholar
  14. Joichi Uchida, An Analysis of the Ultraviolet Band Spectrum of Sodium-Potassium Molecule. Jap J Phys 5, S. 148 (1929), Nr. 4.Google Scholar
  15. R. W. Wood and E. L. Kinsey, The Fluorescence Spectrum of Sodium Vapor In The Vicinity of the D Lines. Phys Rev (2) 31, S. 793 (1928), Nr. 5.ADSGoogle Scholar
  16. R. W. Wood and F. W. Loomis, The Rotational Structure of the Blue-Green Bands of Na2. Phys Rev (2) 31, S. 1126 (1928), Nr. 6.Google Scholar

K

  1. Hideo Jamamoto, The Blue Absorption Band Spectrum of Potassium. Jap J Phys 5, S. 153 (1929), Nr. 4.Google Scholar
  2. H. Kuhn, Über Den Nachweis Eines Durch Polarisationskräfte Gebundenen K2-Moleküls. Naturwiss 18, S. 332 (1930), Nr. 15.ADSGoogle Scholar
  3. L. A. Ramdas, The Spectrum of Potassium Excited During Its Spontaneous Combination With Chlorine. Ind J Phys 3, S. 31 (1928), Nr. 1.Google Scholar

Ag

  1. Brooks A. Brice, The Band Spectrum of Silver Chloride. Phys Rev (2) 33, S. 1090 (1929) Nr. 6.Google Scholar
  2. J. Franck u. H. Kuhn, Über Absorption Und Fluorescenz Von Silberbromid Und Silberchloriddampf. Z F Phys 44, S. 607 (1927) Nr. 9/10.ADSGoogle Scholar

Au

  1. W. F. C. Ferguson, The Spectrum of Gold Chloride. Nature 120, S. 298 (1927), Nr. 3011.ADSGoogle Scholar
  2. W. F. C. Ferguson, The Spectrum of Gold Chloride. Phys Rev (2) 31, S. 969 (1928), Nr. 6.ADSMathSciNetGoogle Scholar

Be

  1. Ernst Bengtsson, Origin of the Ultraviolet Beryllium Hydride Band Spectrum. Nature 123, S. 529 (1929), Nr. 3101.ADSGoogle Scholar
  2. F. A. Jenkins, Fine Structure of the Beryllium Fluoride Bands. Phys Rev (2) 33, S. 1090 (1929), Nr. 6.MathSciNetGoogle Scholar
  3. F. A. Jenkins, Fine Structure of the Beryllium Fluoride Bands. Phys Rev (2) 35, S. 315 (1930), Nr. 4.ADSGoogle Scholar
  4. Jenny E. Rosenthal and F. A. Jenkins, Quantum Analysis of the Beryllium Oxide Bands. Phys Rev (2) 31, S. 705 (1928), Nr. 4.Google Scholar
  5. Jenny E. Rosenthal and F. A. Jenkins, Quantum Analysis of the Beryllium Oxide Bands. Phys Rev (2) 33, S. 163 (1929), Nr. 2.ADSGoogle Scholar
  6. William W. Watson, Beryllium Hydride Band Spectra. Phys Rev (2) 32, S. 600 (1928), Nr. 4.ADSGoogle Scholar

Mg

  1. P. N. Ghosh, B. C. Mookerjee and P. C. Mahanti, Band Spectrum of Magnesium Oxide. Nature 124, S. 303 (1929), Nr. 3121.ADSGoogle Scholar
  2. William W. Watson and Philip Rudnick, Rotational Terms In The Mgh Bands. Phys Rev (2) 29, S. 413 (1927), Nr. 4.ADSGoogle Scholar
  3. P. S. Delaup, Zeeman Effect In The Calcium Hydride Bands. Phys Rev (2) 31, S. 1130 (1928), Nr. 6.Google Scholar
  4. S. Goudsmit, The Structure of the Calcium Fluoride Band? 6087 A. Proc Amsterdam Ac 30, S. 355 (1927), Nr. 3.Google Scholar
  5. B. Grundström and E. Hulthen, Pressure Effects In The Band Structure of Calcium Hydride. Nature 125, S. 634 (1930), Nr. 3156.ADSGoogle Scholar
  6. E. Hulthen, On The Band Spectrum of Calcium Hydride. Phys Rev (2) 29, S. 97 (1927), Nr. 1.ADSGoogle Scholar

Zn

  1. Ernst Bengtsson u. Berger Grundström, Über Neue Zinkhydridbanden Im Ultraviolett. Zf Phys 57, S. 1 (1929), Nr. 1/2.ADSGoogle Scholar
  2. H. Volkringer, Spectres Continus Et Spectres De Bandes De La Vapeur De Zinc. C R 186, S. 1717 (1928), Nr. 25.Google Scholar
  3. H. Volkringer, Spectres De Bandes De La Vapeur De Zinc. C R 189, S. 1264 (1929), Nr. 27.Google Scholar

Cd

  1. S. Barratt and A. R. Bonar, The Band Spectra of Cadmium and Bismuth. Phil Mag (7) 9, S. 519 (1930), Nr. 57.Google Scholar
  2. W. De Groot, Die Ultraviolette Bande Des Cd Bei ? 2100 A. Naturwiss 16, S. 101 (1928), Nr. 6.Google Scholar
  3. A. Jablonski, Über Die Bandenabsorption Und Fluoreszenz Des Cadmiumdampfes.. Z F Phys 45, S. 878 (1927), Nr. 11/12.ADSGoogle Scholar
  4. A. Jablonski, Sur L’Absorption À Spectre De Bandes De La Vapeur De CadmIIIm. Krakauer Anzeiger (A) 1928, S. 163, Nr. 4 /5.Google Scholar
  5. A. Jablonski, Sur Un Système De Bandes D’Absorption De La Vapeur De Cadmium. C R Soc Pol De Phys 3, S. 357 (1929), Nr. 4.Google Scholar
  6. W. Kapuscinski, Sur La Fluorescence De La Vapeur De Cadmium. C R Soc Pol De Phys 8, S. 475 (1927), Nr. 8.Google Scholar
  7. Erik Svensson, Untersuchung Über Das Bandenspektrum Des Cadmiumhydrids. Z F Phys 59, S. 333 (1930), Nr. 5/6.ADSGoogle Scholar
  8. J. G. Winans, Flu Tings In The Absorption Spectrum of A Mixture of Mercury and Cadmium Vapours. Phil Mag (7) 7, S. 565 (1929), Nr. 43.Google Scholar

Hg

  1. Nikolaj Dziedzicki, Sur La Formation Et Le Spectre De L’Hydrure De Mercure. C R Soc Pol De Phys 3, S. 207 (1928), Nr. 3.Google Scholar
  2. Nikolaj Dziedzicki, Über Die Bildung Und Das Spektrum Des Quecksilberhydrürs. Spra-Wozdánia I Prace Polskiego Towarzystra Fizycznego 3, S. 207 (1928), Nr. 3.Google Scholar
  3. M. Eliashevich and A. Terenin, Flourescence of mercury vapour in the far ultra-violet. Nature 125, S. 856 (1930), Nr. 3162.ADSGoogle Scholar
  4. Takeo Hori, Über Das Bandenspektrum Des Ionisierten Quecksilberhydrids, Mem Ryojun Coll of Eng 2, S. 305 (1930), Nr. 4d.Google Scholar
  5. F. G. Houtermans, Über Die Bandenfluoreszenz Des Quecksilberdampfes. Z F Phys 41, S. 140 (1927), Nr. 2/3.ADSGoogle Scholar
  6. E. Hulthen, Neuere Untersuchungen Über Das Bandenspektrum Des Quecksilberhydrids. Zf Phys 50, S. 319 (1928), Nr. 5/6.ADSGoogle Scholar
  7. Henryk Jezewski, Nouvelles Bandes D’Hydrure De Mercure Dans L’Ultraviolet. Krakauer Anzeiger (A) 1928, S. 143, Nr. 4 /5.Google Scholar
  8. W. Kapuscinski u. J. G. Eymers, Intensitätsmessungen Im Bandenspektrum Des Quecksilberhydrids. Zfphys 54, S. 246 (1929), Nr. 3/4.ADSGoogle Scholar
  9. H. Kuhn, Über Das Grundschwingungsquant Des Quecksilbermoleküls. Naturwiss 16, S. 352 (1928), Nr. 20.ADSGoogle Scholar
  10. S. Mrozowski, Sur La Luminescence De La Vapeur De Mercure Excitée Par Les Rayons X. C R Soc Pol De Phys 4, S. 93 (1929), Nr. l.Google Scholar
  11. S. Mrozowski, Zur Deutung Der Träger Der Quecksilberbanden. Z F Phys 60, S. 410 (1930), Nr. 5/6.ADSGoogle Scholar
  12. O. Oldenberg, Über Fluoreszenz Von Quecksilber-Edelgas-Banden. Zfphys 47, S. 184 (1928), Nr. 3/4.ADSGoogle Scholar
  13. O. Oldenberg, Über Struktur Und Deutung Der Quecksilber-Edelgas-Banden. Z F Phys 55, S. 1 (1929), Nr. l.ADSGoogle Scholar
  14. St. Pienkowski, Sur L’Origine De La Bande 2476, 3–2482,7 Dans Le Spectre De Mercure. 797 Krakauer Anzeiger (A) 1928, S. 171, Nr. 4 /5.Google Scholar
  15. Lord Rayleigh, Studies On The Mercury Band Spectrum of Long Duration. London R S Proc (A) 114, S. 620 (1927), Nr. 769.ADSGoogle Scholar
  16. Lord Rayleigh, Series of Emission and Absorption Bands In The Mercury Spectrum. London Rs Proc (A) 116, S. 702 (1927), Nr. 775.ADSGoogle Scholar
  17. Lord Rayleigh, Observations On The Band Spectra of Mercury. London R S Proc (A) 119, S. 349 (1928), Nr. 782.ADSGoogle Scholar
  18. Lord Rayleigh, The Band Spectrum of Mercury From The Excited Vapour. Nature 119, S. 387 (1927), Nr. 2993.ADSGoogle Scholar
  19. Lord Rayleigh, Bands In The Absorption of Mercury. Nature 119, S. 778 (1927), Nr. 3004.ADSGoogle Scholar
  20. H. Volkringer, Spectre Continu Et Spectre De Bandes Du Mercure. C R 185, S. 60 (L 927), Nr. 1.Google Scholar
  21. R. K. Waring, Investigation of A Mercury-Thallium Molecule. Nature 121, S. 675 (1928), Nr. 3052.ADSGoogle Scholar
  22. R. K. Waring, The Absorption Spectra of Mixtures of Mercury and Thallium Vapors. Phys Rev (2) 31, S. 1109 (1928), Nr. 6.Google Scholar
  23. R. K. Waring, Absorption Bands In The Spectra of Mixtures of Metallic Vapors. Phys Rev (2) 32, S. 435 (1928), Nr. 3.ADSGoogle Scholar
  24. J. G. Winans, The Band Spectrum of Mercury Excited By A High Frequency Discharge. Nature 121, S. 863 (1928), Nr. 3057.ADSGoogle Scholar
  25. J. G. Winans, The Fluorescence and Absorption of A Mixture of Mercury and Zinc Vapors. Phys Rev (2) 32, S. 427 (1928), Nr. 3.ADSGoogle Scholar
  26. J. G. Winans, Flutings In The Absorption Spectrum of A Mixture of Mercury and Cadmium Vapours. Phil Mag (7) 7, S. 565 (1929), Nr. 43.Google Scholar

B

  1. F. A. Jenkins, Structure and Isotope Effect In The Alpha Bands of Boron Monoxide. Phys Rev (2) 29, S. 921 (1927), Nr. 6.Google Scholar
  2. F. A. Jenkins, The Structure of Certain Bands In The Visible Spectrum of Boron Monoxide. Wash Nat Ac Proc 13, S. 496 (1927), Nr. 7.ADSGoogle Scholar

Al

  1. Ernst Bengtsson, Über Die Bandenspektra Von Aluminiumhydrid. Z F Phys 51, S. 889 (1928), Nr. 11/12.ADSGoogle Scholar
  2. Ernst Bengtsson u. Ragnar Rydberg, Die Bandenspektra Von Aluminiumhydrid. Z F Phys 59, S. 540 (1930), Nr. 7/8.ADSGoogle Scholar
  3. H. Ludloff, Zur Termdarstellung Der Alh-Banden. Z F Phys 39, S. 519 (1926), Nr. 7/8.ADSGoogle Scholar
  4. W. C. Pomeroy and R. T. Birge, The Quantum Analysis of the Band Spectrum of Alo (λ 5200–λ 4650). Phys Rev (2) 27, S. 107 (1926), Nr. 1.Google Scholar
  5. W. C. Pomeroy, The Quantum Analysis of the Band Spectrum of Aluminium Oxide (λ 5200–λ 4650). Phys Rev (2) 29, S. 59 (1927), Nr. 1.ADSGoogle Scholar

Seltene Erden

  1. J. Becquerel, H. Kamerlingh Onnes and W. J. De Haas, The Absorption Bands of the Compounds of the Rare Earths, Their Modification By A Magnetic Field, and The Magnetic Rotation of the Plane of Polarisation At Very Low Temperatures. Comm Leiden Nr. 177, S. 3 (1925) u. Proc Amsterdam Ac 29, S. 264 (1926), Nr. 2.Google Scholar

La

  1. W. Jevons, The Band Spectrum of Lanthanum Monoxide. London Proc Phys Soc 41, S. 520 (1929), Nr. 5.ADSGoogle Scholar
  2. R. Mecke, Die Bandenspektren Des Lanthanoxyds. Naturwiss 17, S. 86 (1929), Nr. 5.ADSGoogle Scholar
  3. Giorgio Piccardi, New Bands In The Spectrum of Oxide of Lanthanum. Nature 124, S. 129 (1929), Nr. 3117.ADSGoogle Scholar

Pr, Nd, Sa

  1. L. Fernandes, La Risoluzione Di Una Banda Di Assorbimento Ritenuta Commune Al Praseodimio E Neodimio. Lincei Rend (6) 6, S. 413 (1927), Nr. 10.Google Scholar
  2. Giorgio Piccardi, Band Spectra of the Oxides of Praseodymium, Neodymium and Samarium. Nature 124, S. 618 (1929), Nr. 2139.ADSGoogle Scholar

Tl

  1. Ramon G. Loyarte Et Adolfo T. Williams, Le Spectre D’Absorption De La Vapeur De Thallium Entre 7000 Et 1850 A. J D Phys Et Le Radium (6) 9, S. 121 (1928), Nr. 4.Google Scholar

C

  1. R. K. Asundi, A Search of New Bands In The Near Infra-Red Spectra of Co, N+2 and Bef. Ind J Phys 4, S. 367 (1930), Nr. 5.Google Scholar
  2. R. K. Asundi, A New Band System of Carbon Monoxide. Nature 123, S. 47 (1929), Nr. 3089.ADSGoogle Scholar
  3. C. R. Bailey, The Raman and Infra Red Spectra of Carbon Dioxide. Nature 123, S. 410 (1929), Nr. 3098.ADSGoogle Scholar
  4. Raymond T. Birge, The Band Spectra of Carbon Monoxide. Phys Rev (2) 28, S. 1157 (1926), Nr. 6.ADSGoogle Scholar
  5. N. T. Bobrovnikoff, The Spectra of Comets. Phys Rev (2) 29, S. 210 (1927), Nr. 1.Google Scholar
  6. Harold T. Byck, On A Resonance-Fluorescence Phenomenon In The Cyanogen Spectrum. Phys Rev (2) 34, S. 453 (1929), Nr. 3.ADSGoogle Scholar
  7. L. H. Dawson and Joseph Kaplan, The Comet-Tail Bands. Phys Rev (2) 34, S. 379 (1929), Nr. 2.ADSGoogle Scholar
  8. G. H. Dieke and W. Lochte-Holtgreven, Some Bands of the Carbon Molecule. Nature 125, S. 51 (1930), Nr. 3141.Google Scholar
  9. O. S. Duffendack and Gerald W. Fox, Energy Levels of the Carbon Monoxide Molecule. Nature 118, S. 12 (1926), Nr. 2957.ADSGoogle Scholar
  10. O. S. Duffendack and Gerald W. Fox, The Excitation of the Spectra of Carbon Monoxide By Electronic Impacts. Ap J 65, S. 214 (1927), Nr. 4.ADSGoogle Scholar
  11. Duffieux, Sur L’Origine De Quelques Spectres De Bandes. Ann De Phys (10) 4, S. 249 (1925), Sept. /Oct.Google Scholar
  12. D. C. Duncan, Co Bands. Science (N. S.) 63, S. 382 (1926), Nr. 1632.Google Scholar
  13. Roger S. Estey, New Measurements in The Fourth Positive Co Bands. Phys Rev (2) 35, 309 (1930), Nr. 4.ADSGoogle Scholar
  14. Ann. D. Hepburn, Carbon Monoxide Band Excitation Potentials. Phys Rev (2) 29, S. 212 (1927), Nr. l.Google Scholar
  15. Gerhard Herzberg, Ein Neues Bandensystem Des Co. Naturwiss 16, S. 1027 (1928), Nr. 48.ADSGoogle Scholar
  16. Gerhard Herzberg, Über Die Bandenspektren Von Co. Nach Versuchen Mit Der Elek-Trodenlosen Ringentladung (mit einem Anhang über die Swan-und Cyanbanden). Zf Phys 52, S. 815 (1929), Nr. 11/12.ADSGoogle Scholar
  17. J. J. Hopfield, Absorption Spectra In The Extreme Ultra-Violet. Phys Rev (2) 29, S. 356 (1927), Nr. 2.Google Scholar
  18. J. J. Hopfield and R. T. Birge, Ultra-Violet Absorption and Emission Spectra of Carbon Monoxide. Phys Rev (2) 29, S. 922 (1927), Nr. 6.Google Scholar
  19. Takeo Hori, Über Die Struktur Der Ch-Bande 3143 A Und Einer Neuen Nh-Bande 2530 A. Z F Phys 59, S. 91 (1929), Nr. 1 /2.ADSGoogle Scholar
  20. Takeo Hori, Über Die Struktur Der Ch-Bande 3143 A Und Einer Neuen Nh-Bande 2530 A. Mem Ryojun Coll of Eng 2, S. 259 (1929), Nr. 4b.Google Scholar
  21. O. Jasse, Etude Des Bandes 4511 Et 4123 Du Spectre De Toxyde De Carbon. Rev D’Opt 5, S. 450 (1926), Nr. 11.Google Scholar
  22. F. A. Jenkins, Extension of the Violet Cn Band System To Include The Cn Tail Bands. Phys-Rev (2) 31, S. 153 (1928), Nr. 1.Google Scholar
  23. F. A. Jenkins, Extension of the Violet Cn Band System To Include The Cn Tail Bands. Phys Rev (2) 31, S. 539 (1928), Nr. 4.ADSGoogle Scholar
  24. W. Jevons, The Ultra-Violet Band System of Carbon Monosulphide and Its Correlation To-Carbon Monoxide (the 4th positive bands) and silicon monoxide. London R S Proc (A) 117, S. 351 (1928), Nr. 777.ADSGoogle Scholar
  25. R. C. Johnson, Energy Levels of the Carbon Monoxide Molecule. Nature 118, S. 50 (1926), Nr. 2958.ADSGoogle Scholar
  26. R. C. Johnson, The Structure and Origin of the Swan Band Spectrum of Carbon. Phil Trans (A) 226, S. 157 (1927), Nr. 640.ADSGoogle Scholar
  27. R. C. Johnson and R. K. Asundi, A New Band System of Carbon Monoxide (3 1S → 2 1P) with remarks on the Angstrom band system. London R S Proc (A) 123, S. 560 (1929), Nr. 792.ADSGoogle Scholar
  28. R. C. Johnson, Some Bands of the Carbon Molecule. Nature 125, S. 89 (1930), Nr. 3142.ADSGoogle Scholar
  29. H. Kallmann u. B. Rosen, Über Die Ionisierungsspannung Von Cn Und C2-Molekülen. Z f Phys 61, S. 332 (1930), Nr. 5/6.ADSGoogle Scholar
  30. Harvey B. Leman, Some Laboratory Observations Bearing On The Spectra of Comets. Phys Rev (2) 29, S. 210 (1927), Nr. 1.Google Scholar
  31. Louis R. Maxwell, The Comet Tail Bands of Carbon Monoxide. Phys Rev (2) 35, S. 665 (1930), Nr. 6.Google Scholar
  32. Frank C. Mcdonald, An Investigation of Some Hydrocarbon Bands. Phys Rev (2) 29,. S. 212 (1927), Nr. 1.Google Scholar
  33. W. E. Pretty, The Swan Band Spectrum of Carbon. London Proc Phys Soc 40, S. 71 (1928), Nr. 3.ADSGoogle Scholar
  34. W. H. B. Cameron, Note On Some Band Spectra Associated With Silicon. Phil Mag (7) 3, S. 110 (1927), Nr. 13.Google Scholar
  35. Francis A. Jenkins, Structure of the Violet Bands of Silicon Nitride. Phys Rev (2) 31, S. 1129 (1928), Nr. 6.Google Scholar
  36. Francis A. Jenkins and Henry De Laszlo, Structure of the Violet Bands of Silicon Nitride. London R S Proc (A) 122, S. 103 (1929), Nr. 789.ADSGoogle Scholar
  37. R. C. Johnson and H. G. Jenkins, The Band Spectra of Silicon Fluoride. London R S Proc (A) 116, S. 327 (1927), Nr. 774.ADSGoogle Scholar

Ti

  1. R. T. Birge and A. Christy, The Titanium Bands. Phys Rev (2) 29, S, 212 (1927), Nr. 1.Google Scholar
  2. A. Christy and R. T. Birge, The Titanium Oxide Bands. Nature 122, S. 205 (1928), Nr. 3067.ADSGoogle Scholar
  3. Andrew Christy, Quantum Analysis of the Blue-Green Bands of Titanium Oxyde. Phys Rev (2) 33, S. 701 (1929), Nr. 5.ADSGoogle Scholar
  4. Andrew Christy, A New Titanium Band System. Phys Rev (2) 34, S. 539 (1929), Nr. 3.Google Scholar
  5. andrew Christy, A New Titanium Band System. Nature 123, S. 873 (1929), Nr. 3110.ADSGoogle Scholar
  6. Andrew Christy New Band System of Titanium Oxide. Ap J 70, S. 1 (1929), Nr. 1.Google Scholar
  7. Frances Lowater, The Band Systems of Titanium Oxide. London Proc Phys Soc 41, S. 557 (1929), Nr. 5.ADSGoogle Scholar
  8. Frances Lowater, Titanium Oxide Bands In The Orange, Red and Infrared Region. Nature 123, S. 644 (1929), Nr. 3104.ADSGoogle Scholar

Sn

  1. W. F. C. Ferguson, The Less Refrangible Bands In The Spectrum of Tin Monochloride. Phys Rev (2) 32, S. 607 (1928), Nr. 4.ADSGoogle Scholar

Pb

  1. Sidney Bloomenthal, An Ultra-Violet Lead Oxide Band System. Science (N. S. ) 69, S. 676 (1929), Nr. 1800.ADSGoogle Scholar
  2. Andrew Christy and Sidney Bloomenthal, Fine Structure Analysis of the Bands of the A and D System of Lead Oxide. Phys Rev (2) 35, S. 46 (1930), Nr. 1.ADSGoogle Scholar
  3. R. Mecke, Bandenspektrum Des Bleis. Naturwiss 17, S. 122 (1929), Nr. 7.ADSGoogle Scholar

N

  1. H. Elizabeth Acly, Struktur Und Anregungsstufen Der Molekeln Einiger Nitride, Bestimmt Durch Das Ultraviolette Absorptionsspektrum Der Dämpfe. Z F Phys Chem 135, S. 251 (1928), Nr. 3/4.Google Scholar
  2. Henry A. Barton, Francis A. Jenkins and Robert S. Mulliken, The Beta Bands of Nitric Oxide. II. Intensity Relations and Their Interpretation. Phys Rev (2) 30, S. 175 (1927), Nr. 2.ADSGoogle Scholar
  3. R. T. Birge and J. J. Hopfield, The Ultra-Violet Band Spectra of Nitrogen. Phys Rev (2) 29, S. 356 (1927), Nr. 2.Google Scholar
  4. L. H. Easson and R. W. Armour, The Action of “ctive” Nitrogen On Iodine Vapour. Proc Rs Edinburgh 48, S. 1 (1927/28), Nr. 1.Google Scholar
  5. John H. Findley, Spectra Excited By Active Nitrogen. Trans R S Canada Sect, III (3) 22, S. 341 (1928), Nr. 2.Google Scholar
  6. Maria Guillery, Über Das Bandenspektrum Von No. Yerh D Phys Ges (3) 7, S. 46 (1926), Nr. 3.Google Scholar
  7. Maria Guillery, Über Den Bau Der Sogenannten Dritten Positiven Stickstof fgruppe (NO-Banden). Z f Phys 42, S. 121 (1927), Nr. 2/3.ADSGoogle Scholar
  8. Gerhard Herzberg, Spektroskopisches Über Das Nachleuchten Von Stickstof f. Z F Phys 49, S. 512 (1928), Nr. 7/8.ADSGoogle Scholar
  9. Gerhard Herzberg, Über Die Struktur Der Negativen Stickstof f Banden. Ann D Phys (4) 86, S. 189 (1928), Nr. 10.ADSGoogle Scholar
  10. J. J. Hopfield, New Absorption Bands In Nitrogen. Phys Rev (2) 31, S. 1131 (1928), Nr. 6.Google Scholar
  11. Francis A. Jenkins, Henry A. Barton and Robert S. Mulliken, The Beta Bands of Nitric Oxide. Phys Rev (2) 29, S. 211 (1927), Nr. 1.Google Scholar
  12. Francis A. Jenkins, Henry A. Barton and R. S. Mulliken, The. Beta Bands of Nitric Oxide, 1. Measurements and Quantum Analysis. Phys Rev (2) 30, S. 150 (1927), Nr. 2.ADSGoogle Scholar
  13. Francis A. Jenkins, Henry A. Barton and R. S. Mulliken, The Beta Bands of Nitric Oxide. Nature 119, S. 118 (1927), Nr. 2986.ADSGoogle Scholar
  14. W. Jevons, The More Refrangible Band System of Cyanogen As Developed In Active Nitrogen. London Rs Proc (A) 112, S. 407 (1926), Nr. 76I.ADSGoogle Scholar
  15. R. C. Johnson and H. G. Jenkins, Note On Some Observations of the Nitrogen After-Glow Spectra. Phil Mag (7) 2, S. 621 (1926), Nr. 9.Google Scholar
  16. Joseph Kaplan, Active Nitrogen. Phys Rev (2) 31, S. 1126 (1928), Nr. 6.Google Scholar
  17. Joseph Kaplan, The Excitation of Oxygen By:Active Nitrogen. Phys Rev (2) 31, S. 1126 (1928), Nr. 6.Google Scholar
  18. Joseph Kaplan, The Existence of Metastable Molecules In Active Nitrogen. Phys Rev (2) 33, S. 189 (1929), Nr. 2.ADSGoogle Scholar
  19. Joseph Kaplan, Active Nitrogen. Phys Rev (2) 33, S. 638 (1929), Nr. 4.Google Scholar
  20. Joseph Kaplan, Excitation of the Beta Bands of Nitric Oxide. Phys Rev (2) 34, S. 165 (1929), Nr. 1.ADSGoogle Scholar
  21. P. K. Kichlu and D. P. Acharya, Active Nitrogen. Nature 121, S. 982 (1928), Nr. 3060.ADSGoogle Scholar
  22. Harold P. Knauss, Band Spectra In The Extreme Ultra-Violet Excited By Active Nitrogen. Phys Rev (2) 31, S. 918 (1928), Nr. 5.Google Scholar
  23. Harold P. Knauss, Band Spectra In The Extreme Ultra-Violet Excited By Active Nitrogen. Phys Rev (2) 32, S. 417 (1928), Nr. 3.ADSGoogle Scholar
  24. H. O. Kneser, Über Die Natur Des Aktiven Stickstof fs. Phys Z 29, S. 895 (1928), Nr. 23.Google Scholar
  25. H. O. Kneser, Über Die Natur Des Aktiven Stickstof fs. Ann D Phys (4) 87, S. 717 (1928), Nr. 21.ADSGoogle Scholar
  26. Maurice Lambrey, Les Deux États Normaux De La Molécule No. Cr 100, S. 670 (1930), Nr. 11.Google Scholar
  27. J. C. Mclennan, R. Ruedy and J. M. Anderson, On The Nitrogen Afterglow. Trans R S Canada, Sect. III (3) 22, S. 303 (1928), Nr. 2.Google Scholar
  28. Robert S. Mulliken, The Vibrational Isotope Effect In The Band Spectrum of Boron Nitride. Science (N. S.) 58, S. 164 (1923), Nr. 1496.ADSGoogle Scholar
  29. Gisaburo Nakamura, On The Zero-Zero Band of the Second Positive Band Spectrum of Nitrogen (X 3371). Jap J Phys 4, S. 109 (1927), Nr. 3.Google Scholar
  30. J. Okubo and H. Hamada, Metallic Spectra Excited By Active Nitrogen. Phil Mag (7) 5. S. 372 (1928), Nr. 28.Google Scholar
  31. A. H. Poetker, Extension of the First Group of Nitrogen Bands. Phys. Rev (2) 31, S. 152 (1928), Nr. 1.Google Scholar
  32. Arthur Edward Ruark, Paul O. Foote, Philip Rudnick and Roy L. Chenault, Spectra Excited By Active Nitrogen. J Opt Soc Am 14, S. 17 (1927), Nr. 1.ADSGoogle Scholar
  33. Richard Rudy, On Active Nitrogen. II. J Frankl Instit 202, S. 376 (1926), Nr. 3.Google Scholar
  34. Richard Rudy, On The Active Nitrogen Glow. Phys Rev (2) 35, S. 125 (1930), Nr. 1.Google Scholar
  35. H. D. Smith and E. G. F. Arnott, The Excitation of Certain Nitrogen Bands By Positive Ion Impact. Phys Rev (2) 35, S. 126 (1930), Nr. 1.Google Scholar
  36. H. Sponer, Absorption Bands In Nitrogen. Wash Nat Ac Proc 13, S. 100 (1927), Nr. 3.ADSGoogle Scholar
  37. H. Sponer, Die Absorptionsbanden Des Stickstof fs. Z F Phys 41, S. 611 (1927), Nr. 8/9.ADSGoogle Scholar
  38. Louis A. Turner and E. W. Samson, The Excitation Potential of the Negative Bands of Nitrogen. Phys Rev (2) 34, S. 747 (1929), Nr. 5.Google Scholar
  39. E. J. B. Willey, Active Nitrogen. Nature 121, S. 355 (1928), Nr. 3045.Google Scholar
  40. Eric John, Baxter Willey, On Active Nitrogen. Part VII. Further Studies Upon The Decay of the Nitrogen After-Glow. J Chem Soc 1930, S. 336, March.Google Scholar
  41. Enos E. Witmer, The Critical Potential of the Negative Band Spectrum of Nitrogen. Phys Rev (2) 26, S. 780 (1925), Nr. 6.ADSGoogle Scholar

O

  1. Harold D. Babcock, A New Absorption Band of Atmospheric Oxygen and The Vibrational Frequency of the Normal Molecule. Phys Rev (2) 35, S. 125 (1930), Nr. 1.Google Scholar
  2. R. M. Badger U. R. Mecke, Die Atmosphärische Sauerstof fbande A 7600 (A-Gruppe). Zf Phys 60, S. 59 (1930), Nr. 1/2.ADSGoogle Scholar
  3. G. H. Dieke and Harold D. Babcock, The Structure of the Atmospheric Absorption Bands of Oxygen. Wash Nat Ac Proc 13, S. 670 (1927), Nr. 9.ADSGoogle Scholar
  4. J. Dufay, Sur Les Spectres D’Absorption De L’Oxygène Et De L’Ozone Dans La Région Ultraviolette. C R 188, S. 162 (1929), Nr. 2.Google Scholar
  5. Vivian M. Ellisworth and J. J. Hopfield, Oxygen Bands In The Ultra-Violet. Phys Rev (2) 29, S. 79 (1927), Nr. 1.ADSGoogle Scholar
  6. H. Fesefeldt, Messungen Von Sauerstof f Banden Im Violetten Und Ultravioletten Spektral Gebiet. Z F Wiss Photogr 25, S. 33 (1927), Nr. 1.Google Scholar
  7. A. S. Ganesan, The Ultra-Violet Absorption Bands of Oxygen. Ind J Phys 3, S. 95 (1928), Nr. 1.Google Scholar
  8. Alfred Länchli, Über Die Absorption Des Ultravioletten Lichtes In Ozon. Helv Phys Acta 1, S. 208 (1928), Nr. 3.Google Scholar
  9. W. Lochte-Holtgreven u. G. H. Dieke, Über Die Ultravioletten Banden Des Neutralen Sauerstof fmoleküls. Ann D Phys (5) 3, S. 937 (1929), Nr. 7.ADSGoogle Scholar
  10. Robert S. Mulliken, Structure of the Oh Bands. Phys Rev (2) 31, S. 310 (1928), Nr. 2.Google Scholar
  11. Robert S. Mulliken, Interpretation of the Atmospheric Oxygen Bands; Electronic Levels of the Oxygen Molecule. Nature 122, S. 505 (1928), Nr. 3075.ADSGoogle Scholar
  12. W. Ossenbrüggen, Termdarstellung Der Bandenspektren Des Neutralen Sauerstof fmoleküls. Zf Phys 49, S. 167 (1928), Nr. 3/4.ADSGoogle Scholar

S

  1. J. Gilles, Bandes Ultraviolettes Du Soufre. Cr 188, S. 1607 (1929), Nr. 25.Google Scholar
  2. B. Rosen, Resonanz, Fluoreszenz Und Absorptionsspektra In Der Sechsten Gruppe Des Periodischen Systems. Z F Phys 43, S. 69 (1927), Nr. 1/2.ADSGoogle Scholar
  3. B. Rosen, Über Molekülspektra Des Schwefels. Z F Phys 48, S. 545 (1928), Nr. 7/8.ADSGoogle Scholar

Se

  1. A. F. Evans, The Absorption Spectrum of Selenium Dioxide. Nature 125, S. 528 (1930), Nr. 3153.ADSGoogle Scholar
  2. Mlle. M. Moraczewska, Über Das Absorptionsspektrum Des Se-Dampfes. Z F Phys 62, S. 270 (1930), Nr. 3/4.ADSGoogle Scholar
  3. Mlle. Barbara Schmidt, Sur Une Nouvelle Série De Résonance Du Sélénium. Krakauer Anzeiger (A) 1928, S. 61, Nr. 3.Google Scholar

Halogene

  1. G. B. Bonino, Bemerkungen Über Das Ultrarotspektrum Einiger Halogen Verbindungen. Z F Phys 54, S. 803 (1929), Nr. 11/12.ADSGoogle Scholar
  2. P. Bovis, Les Larges Bandes D’Absorption Continue Chez Les Halogènes. Ann De Phys (10), 10, S. 232 (1928), Sept. /Oct.Google Scholar
  3. Rudolf Ritschl, Über Den Bau Einer Klasse Von Absorptionsspektren. Z F Phys 42, S. 172 (1927), Nr. 43.ADSGoogle Scholar

F

  1. Henry G. Gale and George S. Monk, Band Spectrum, Continuous Emission and Continuous Absorption of Fluorine Gas. Phys Rev (2) 29, S. 211 (1927), Nr. 1.Google Scholar
  2. Henry G. Gale and George S. Monk, The Band Spectrum of Fluorine. Phys Rev (2) 33 S. 114 (1929), Nr. l.Google Scholar
  3. Henry G. Gale and George S. Monk, The Band Spectrum of Fluorine. Ap J 69, S. 77 (1929), Nr. 2.ADSGoogle Scholar

Cl

  1. A. Elliott, The Absorption Band Spectrum of Chlorine. London R S Proc (A) 123, S. 629 (1929), Nr. 792.ADSGoogle Scholar
  2. Joritsune Ota and Joichi Ushida, Studies On The Emission Band Spectrum of Chlorine Jap J Phys 5, S. 53 (1928), Nr. 1.Google Scholar

Br

  1. Margaret B. Hays, The Absorption Spectrum of Bromine Vapor Between 6117 A and 6309 Â. J Frankl Instit 208, S. 363 (1929), Nr. 3.Google Scholar
  2. Takeo Hori, Study of the Structure of Bromine Lines. Mem Coll of of Science Kyoto (A) 9, S. 307 (1926), Nr. 5.Google Scholar
  3. Joichi Ushida and Joritsune Ota, Studies on the Emission Band Spectrum of Bromine. Jap J Phys 5, S. 59 (1928), Nr. 1.Google Scholar

J

  1. S. S. Bhatnagar, D. L. Shrivastava, K. N. Mathur and R. K. Sharma, Tesla Luminescence Spectra of the Halogens. Part I. Jodine. Phil Mag (7) 5, S. 1226 (1928), Nr. 33.Google Scholar
  2. Günther Cario u. Otto Oldenberg, Über Elektrische Anregung Des Jodbandenspektrums Und Des Jodlinienspektrums. Z F Phys 31, S. 914 (1925), Nr. 12.ADSGoogle Scholar
  3. Richard Hamer and Conrad K. Rizer, The Effect of Small Changes At Moderate Temperatures On The Absorption Spectrum of Iodine. J Opt Soc Am 16, S. 122 (1928), Nr. 2.Google Scholar
  4. A. Kratzer u. Elis Sudholt, Die Gesetzmäßigkeiten Im Resonanzspektrum Des Joddampfes Und Die Bestimmung Des Trägheitsmomentes. Z F Phys 33, S. 144 (1925), Nr. 1/2.ADSGoogle Scholar
  5. F. W. Loomis, New Series In The Spectrum of Fluorescent Iodine. Phys Rev (2) 29, S. 355 (1927), Nr. 2.Google Scholar
  6. Peter Pringsheim, Neue Beobachtungen Über Die Absorption Und Fluoreszenz Des J2-Dampfes. Naturwiss 16, S. 131 (1928), Nr. 8.ADSGoogle Scholar
  7. Peter Pringsheim u. B. Rosen, Über Die Bandensysteme Im Spektrum Des J2-Dampfes. Z F Phys 50, S. 1 (1928), Nr. 1/2.ADSGoogle Scholar
  8. Peter Pringsheim, Ausfallende Linien In Optisch Erregten Joddampf Fluoreszenzbanden. Naturwiss 16, S. 31S (1928), Nr. 18.Google Scholar
  9. H. Sponer u. W. W. Watson, Die Molekülabsorption Des Jods Im Vakuumultraviolett. Z F Phys 56, S. 184 (1929), Nr. 3/4; siehe auch Verh D Phys Ges (3) 10, S. 32 (1929), Nr. 2.ADSGoogle Scholar
  10. Carl D. Wilson, Absorption Band Spectrum of Iodine Monochloride. Phys Rev (2) 32, S. 611 (1928), Nr. 4.ADSGoogle Scholar
  11. R. W. Wood and F. W. Loomis, Optically Excited Iodine Bands With Alternate Missing Lines. Phil Mag (7) 6, S. 231 (1928), Nr. 34.Google Scholar
  12. R. W. Wood and F. W. Loomis, Optically Excited Iodine Bands With Alternate Missing Lines. Nature 121, S. 283-(1928), Nr. 3043.ADSGoogle Scholar

He

  1. W. E. Curtis and R. G. Long, The Structure of the Band Spectrum of Helium. III. The Doublet Bands. London R S Proc (A) 108, S. 513 (1925), Nr. 747.ADSGoogle Scholar
  2. W. E. Curtis, The Structure of the Band Spectrum of Helium. Iv. London R S Proc (A) 118, S. 157 (1928), Nr. 779.ADSGoogle Scholar
  3. W. E. Curtis and W. Jevons, The Zeeman Effect In The Band Spectrum of Helium. London R S Proc (A) 120, S. 110 (1928), Nr. 784.ADSGoogle Scholar
  4. W. E. Curtis and A. Harvey, The Structure of the Band Spectrum of Helium. Vi. London R S Proc (A) 125, S. 484 (1929), Nr. 798.ADSGoogle Scholar
  5. G. H. Dieke, T. Takamine and T. Suga, New Regularities In The Band Spectrum of Helium. Nature 121, S. 793 (1928), Nr. 3055.ADSGoogle Scholar
  6. C. H. Dieke, T. Takamine u. T. Suga, Neue Gesetzmäßigkeiten Im Bandenspektrum Des Heliums. I. Z F Phys 49, S. 637 (1928), Nr. 9/10.ADSGoogle Scholar
  7. C. H. Dieke, S. Imanishi u. T. Takamine, Neue Gesetzmäßigkeiten Im Bandenspektrum Des Heliums. II. Z F Phys 54, S. 826 (1929), Nr. 11/12.ADSGoogle Scholar
  8. G. H. Dieke, S. Imanishi u. T. Takamine, Neue Gesetzmäßigkeiten Im Bandenspektrum Des Heliums. III. Z F Phys 57, S. 305 (1929), Nr. 5/6.ADSGoogle Scholar
  9. Joshio Fujioka, Experimentaluntersuchungen Über Die Heliumbanden. Z F Phys 52, S. 657 (1928), Nr. 9/10.ADSGoogle Scholar
  10. Sunao Imanishi, A Study of the Helium Band Spectrum. Scient Pap Inst Phys Chem Res Tokyo 10, S. 193 (1929), Nr. 184.Google Scholar
  11. Sunao Imanishi, A Study of the Helium Band Spectrum. Scient Pap Inst Phys Chem Res Tokyo 10, S. 237 (1929), Nr. 189.Google Scholar
  12. Sunao Imanishi, Electronic Fine Structure In Helium Bands. Nature 125, S. 529 (1930), Nr. 3153.ADSGoogle Scholar
  13. Sunao Imanishi, A Study of the Helium Band Spectrum. III. Scient Pap Inst Phys Chem Res Tokyo 11, S. 139 (1929), Nr. 199.Google Scholar
  14. L. A. Sommer, Bands In The Extreme Ultraviolet Spectrum of Helium Discharge. Wash Nat Ac Proc 13, S. 213 (1927), Nr. 4.ADSGoogle Scholar
  15. W. Weizel U. Chr. Füchtbauer, Kernschwingungen Im Bandenspektrum Des Heliums. Z F Phys 44, S. 431 (1927), Nr. 6/7.ADSGoogle Scholar
  16. W. Weizel, Über Das Bandenspektrum Des Heliums. Z F Phys 51, S. 328 (1928), Nr. 5/6.ADSGoogle Scholar
  17. W. Weizel U. Erich Pestel, Über Das Bandenspektrum Des Heliums. Naturwiss 17, S. 390 (1929), Nr. 21.ADSGoogle Scholar
  18. W. Weizel U. Erich Pestel, Gesetzmäßigkeiten Im Bandenspektrum Des Heliums. Schwin-Gungsquanten Von He2 Und He+2. Z F Phys 56, S. 197 (1929), Nr. 3/4.ADSGoogle Scholar
  19. W. Weizel, Analyse Des Bandenspektrums Des Heliums. Z F Phys 54, S. 321 (1929), Nr. 5/6.ADSGoogle Scholar

Ne

  1. D. G. Dhavale, A Probable Band Spectrum of Neon. Nature 125, S. 276 (1930), Nr. 3147.ADSGoogle Scholar

Copyright information

© Julius Springer in Berlin 1930

Authors and Affiliations

  1. 1.PotsdamDeutschland

Personalised recommendations