Advertisement

Luminosities, Colours, Diameters, Densities, Masses of the Stars

  • Knut Lundmark
Part of the Handbuch der Astrophysik book series (volume 5/2)

Abstract

The underestimation of the distance and the dimensions of the Sun that was a dominating feature of Greek astronomy, was adopted by the astronomers of the Occident and believed until the end of the 17th century. Practically nothing was known about the physical nature of the stars until that time. The distances of the stars also were underestimated and that fact may explain why many observers thought that the stars displayed measurable diameters. It is clear that it was the irradiation and diffraction that deceived the pioneers. In order to illustrate the kind of rôle these phenomena sometimes play we quote some measurements of the “diameters” of different magnitudes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Libelli duo, unus de supplemento almanach etc. Norimbergae (1543).Google Scholar
  2. 2.
    Opera omnia 2, p. 429 (1925); Astronomiae instauratae progymnasmata. Pragae (1602).Google Scholar
  3. 3.
    Novae coelestium orbium theoricae. Moguntiaci (1608).Google Scholar
  4. 4.
    Uranometria. Middelburgi (1631).Google Scholar
  5. 5.
    Hortensius, Landsbergii commentationes in motum terrae. Middelburgi (1630).Google Scholar
  6. 6.
    Almagestum novum I, p. 424, 716 (1651).Google Scholar
  7. 7.
    Mercurius in Sole visus, p. 92. Gedani (1662).Google Scholar
  8. 8.
    Opera II, p. 676, 689 (1859).Google Scholar
  9. 9.
    Opera VI, p. 335 (1866).Google Scholar
  10. 1.
    Venus in Sole visa anno 1639, p. 139, edited by Hevelius, see Note 7, p. 575; De magnitudine fixarum. Opera, p. 61 (1672–78), ed. by Wallis, London.Google Scholar
  11. 2.
    Ars magna lucis et umbrae, p. 119. Romae (1646).Google Scholar
  12. 3.
    Opera omnia 2, p. 429 (1925); Astronomiae instauratae progymnasmata. Pragae (1602).Google Scholar
  13. 4.
    An Attempt to prove the Motion of the Earth, p. 26. London (1674).Google Scholar
  14. 5.
    London Phil Trans p. 853 (1718); p. 3 (1720).Google Scholar
  15. 6.
    London Phil Trans p. 234 (1767).Google Scholar
  16. 7.
    Collected Works II, p. 297 (1912).Google Scholar
  17. 8.
    Die Beugungserscheinungen aus der Undulationstheorie analytisch entwickelt. Mannheim (1835).Google Scholar
  18. 9.
    Wien Denkschr Akad Wiss II. Cl 5, p. 91 (1852).Google Scholar
  19. 1.
    C R 66, p. 932 (1868). Fizeau also pointed out the possibility of using the phenomena of scintillation for the determination of stellar diameters.Google Scholar
  20. 2.
    London Phil Trans (1802); A Course of Lectures on Natural Philosophy. London (1807).Google Scholar
  21. 3.
    Ann Chim Phys I (1816); XI (1819); Paris Mém de l’Acad V (1826).Google Scholar
  22. 4.
    Phil Mag (5) 30, p. 1 (1890); (5) 31, p. 338 (1891); (5) 34, p. 280 (1892); Amer J of Science (3) 39, p. 115 (1890).Google Scholar
  23. 5.
    C R 78, p. 1008 (1874).Google Scholar
  24. 6.
    Publ A S P 3, p. 274 (1891).Google Scholar
  25. 7.
    B A 16, p. 257 (1899).Google Scholar
  26. 8.
    Proc Amer Academy of Arts and Sciences 16, p. 1 (1880).Google Scholar
  27. 1.
    C R 152, p. 73 (1911).Google Scholar
  28. 2.
    Z f wiss Photogr 4, p. 43 (1906).Google Scholar
  29. 3.
    A N 185, p. 33 (1910); 186, p. 161 (1910).Google Scholar
  30. 4.
    Potsd Publ No. 76 (1920).Google Scholar
  31. 1.
    Phil Mag 24, p. 352 (1912).Google Scholar
  32. 2.
    Dissert. Breslau (1913).Google Scholar
  33. 3.
    Phil Mag 29, p. 301 (1915); Amer Illum Engin Soc Trans 9, p. 633 (1915).Google Scholar
  34. 4.
    Scientific Pap Bureau Stand No. 303 (1917).Google Scholar
  35. 1.
    Harv Ann 59, Nr 6 (1912).Google Scholar
  36. 1.
    A N 222, p. 237; 226, p. 1 (1925); 226, p. 225 (1926).Google Scholar
  37. 2.
    Mt Wilson Contr No. 369 (1928); Ap J 68, p. 279.Google Scholar
  38. 3.
    Publ A S P 32, p. 307 (1920).Google Scholar
  39. 1.
    Pop Astr 22, p. 339 (1914).Google Scholar
  40. 1.
    Leiden Ann XIV: 1 (1922).Google Scholar
  41. 2.
    Berlin-Babelsberg Veröff 3. H. 4 (1923).Google Scholar
  42. 1.
    Seeliger-Festschr p. 338 (1924).Google Scholar
  43. 2.
    Mt Wilson Contr No. 369; Ap J 68, p. 279 (1928).Google Scholar
  44. 1.
    A N 233, p. 93 (1928). Also thesis in Budapest (Hungarian).Google Scholar
  45. 2.
    AN 219, p. 21 (1923).Google Scholar
  46. 1.
    Mt Wilson Contr No. 184, 185 (1920) and No. 203 (1921); Ap J 5l, p. 257, 263; 53, p. 249.Google Scholar
  47. 2.
    Recent work by W. A. Calder at Harvard College Observatory [Harv Bull 885 (1931)] using the Harvard 15 inch refractor and a stellar interferometer in front of the objective, emphasizes the importance of good seeing at interferometer measures. Calder concludes: “… that the statements frequently found to the effect that, in contrast to what might be expected, the interferometer does not require excellent seeing conditions, are unduly optimistic. Atmospheric conditions appear to be controlling factor, and seriously restrict the possibilities of the interference method.”Google Scholar
  48. 1.
    Mt Wilson Contr No. 203; Ap J 53, p. 249 (1921).Google Scholar
  49. 1.
    Mt Wilson Contr No. 222 (1922); Ap J 55, p. 48.Google Scholar
  50. 2.
    Publ A S P 34, p. 346 (1–922); Mt Wilson Reports 1920–1928.Google Scholar
  51. 1.
    C R 174, p. 342 (1922); Journal de Mathématiques pures et appliquées 1917 and 1920; B A Mém et Var I, p. 198 (1920).Google Scholar
  52. 1.
    C R 174, p. 904 (1922).Google Scholar
  53. 1.
    C R 175, p. 1123 (1922).Google Scholar
  54. 2.
    B A 16, p. 257 (1899).Google Scholar
  55. 1.
    C R 176, p. 1849 (1923).Google Scholar
  56. 1.
    C R 174, p. 1408 (1922).Google Scholar
  57. 2.
    M N 84, p. 308 (1924).Google Scholar
  58. 3.
    Berlin-Babelsberg Veröff 3, No. 4 (1923); A N 220, p. 189 (1924).Google Scholar
  59. 4.
    Wash Nat Acad Proc 11, p. 382 (1925).Google Scholar
  60. 1.
    Publ A S P 40, p. 229 (1928).Google Scholar
  61. 2.
    A N 229, p. 69 (1926).Google Scholar
  62. 1.
    Mitteilungen Leshafts Inst Leningrad (Russian) 2, p. 126 (1921).Google Scholar
  63. 2.
    Receuil inaugural de l’Université de Lausanne (1892). La scintillation des étoiles.Google Scholar
  64. 3.
    Bull de l’Acad Roy Belg Ser. II, 25, p. 631 (1868); 29, p. 80 (1870); 29, p. 455 (1780); 37, p. 165 (1874); 38, p. 300 (1874) (Catalogue); 42, p. 255 (1876); 44, p. 694 (1877); 43, p. 391 (1878); 46, p. 17 (1878); 46, p. 328 (1878); 46, p. 598 (1878); 47, p. 755 (1879); 48, p.22 (1879): Ser. III, 1, p. 231 (l88l); 6, p. 426 (1883); 9, p. 85 (1885); 16, p. 160, 553 (1888); Ann de l’Obs Bruxelles 1878, p. 245.Google Scholar
  65. 4.
    Ap J 36, p. 156 (1912); A N 192, p. 21 (1912); B A 29, p. 305 (1912).Google Scholar
  66. 5.
    Ap J 41, p. 147 (1915).Google Scholar
  67. 6.
    M N 87, p. 34 (1926).Google Scholar
  68. 1.
    Proc Amer Acad of Arts and Sciences 16, p. 1 (l880).Google Scholar
  69. 2.
    Obs 10, p. 96 (1887).Google Scholar
  70. 3.
    J B A A 2, p. 35 (1891); Astronomy and Astrophysics 11, p. 145 (1892).Google Scholar
  71. 4.
    Ap J 44, p. 293 (1916).Google Scholar
  72. 1.
    A N 213, p. 1 (1921).Google Scholar
  73. 1.
    Jahrb d Radioakt u Elektronik 1919, H. 1.Google Scholar
  74. 1.
    J B A A 39, p. 247, 253 (1929).Google Scholar
  75. 1.
    C R 122, p. 1254 (1896).Google Scholar
  76. 1.
    Ap J 10, p. 308 (1899).Google Scholar
  77. 2.
    Ap J 10, p. 315 (1899).Google Scholar
  78. 1.
    Princeton Obs Contr, No. 3 (1915).Google Scholar
  79. 2.
    Ap J 40, p. 417 (1914).Google Scholar
  80. 1.
    Russell and Shapley, Ap J 40, p. 417 (1914) and subsequent papers by numerous workers within this field.Google Scholar
  81. 2.
    A J 38, p. 45 (1927).Google Scholar
  82. 1.
    Kreiken, M N 89, p. 589 (1929).Google Scholar
  83. 1.
    Mem R A S 56 (1906).Google Scholar
  84. 2.
    M N 89, p. 647 (1929).Google Scholar
  85. 3.
    A N 203, p- 9 (1916); København K Acad Forhandl Oversigt 1916, No. 1.Google Scholar
  86. 4.
    A J 35, p- 141 (1924).Google Scholar
  87. 5.
    Lick Bull 6, p. 125 (1911).Google Scholar
  88. 6.
    Harv Ann 56, No. 7 (1912).Google Scholar
  89. 7.
    Lick Bull 10, p. 169 (1923).Google Scholar
  90. 8.
    A J 35, p. 93 (1923).Google Scholar
  91. 9.
    M N 10, p. 170 (1850).Google Scholar
  92. 1.
    Obs 47, p. 376 (1924).Google Scholar
  93. 2.
    A N 22, p. 145 (l844); Abhandlungen von Friedrich Wilhelm Bessel, herausg. von R. Engelmann II, p. 306 (1875).Google Scholar
  94. 3.
    A N 58, p. 33 (1862).Google Scholar
  95. 4.
    Mem R A S 56 (1906).Google Scholar
  96. 5.
    Lewis did not care to derive <inline></inline> his material, but pointed out the possibility of doing so [Mem R A S 56, p. XXI (1906)].Google Scholar
  97. 6.
    Pop Astr 18, p. 483 (1910).Google Scholar
  98. 7.
    Groningen Publ, No. 24 (1910).Google Scholar
  99. 1.
    South African Journal of Science. 1916 June.Google Scholar
  100. 2.
    Publ A S P 31, p. 231 (1919).Google Scholar
  101. 3.
    A N 216, p. 301 (1922).Google Scholar
  102. 4.
    A N 216, p. 385 (1922).Google Scholar
  103. 1.
    M N 82, p. 447 (1922).Google Scholar
  104. 1.
    M N 71, p. 610 (1911).Google Scholar
  105. 1.
    A J 26, p. 147 (1910).Google Scholar
  106. 1.
    Publ Allegheny Obs 1, No. 21 (1910).Google Scholar
  107. 2.
    A N 189, p. 145 (1911).Google Scholar
  108. 1.
    A N 211, p. 105 (1920).Google Scholar
  109. 1.
    A N 216, p. 309 (1922).Google Scholar
  110. 1.
    A J 34, p. 127 (1922).Google Scholar
  111. 1.
    A J 39, p. 57 (1929).Google Scholar
  112. 2.
    B A N 3, p. 149 (1926).Google Scholar
  113. 1.
    Lick Bull 11, p. 141 (1924).Google Scholar
  114. 1.
    Wash Nat Ac Proc 10, p. 394 (1924).Google Scholar
  115. 2.
    From Hertzsprung’s paper in B A N 2, p. 15 (1923).Google Scholar
  116. 1.
    Mt Wilson Contr 226 (1922).Google Scholar
  117. 2.
    Publ Obs Astrophys Centr Russ Moscou 2, p. 289, 303 (1923).Google Scholar
  118. 3.
    Phil Mag 39, p. 488 (1920).Google Scholar
  119. 4.
    Ap J 54, p. 334 (1921); Mt Wilson Contr 216.Google Scholar
  120. 1.
    Mt Wilson Contr, No. 226 (1922); Ap J 55, p. 165 (1922).Google Scholar
  121. 1.
    Mt Wilson Contr, No. 82, 147; Ap J 40, p. 43 (1914); 47, p. 146, 255 (1918).Google Scholar
  122. 2.
    Publ A S P 33, p. 140 (1921).Google Scholar
  123. 1.
    Potsd Publ No. 74 (1919).Google Scholar
  124. 2.
    Mt Wilson Comm 59; Wash Nat Ac Proc 5, p. 232 (1919).Google Scholar
  125. 1.
    Ap J 55, p. 238 (1922); Mt Wilson Contr 226.Google Scholar
  126. 1.
    B A N 1, p. 107 (1922); Obs 46, p. 304 (1923).Google Scholar
  127. 1.
    J B A A 34, p. 144 (1924).Google Scholar
  128. 2.
    V J S 59, p. 203 (1924).Google Scholar
  129. 3.
    A N 227, p. 145 (1926); Charkov Obs Publ, No. 1, p. 12 (1927).Google Scholar
  130. 1.
    Gron Publ, No. 34, p. 60 (1923).Google Scholar
  131. 2.
    Ap J 55, p. 198 (1922).Google Scholar
  132. 1.
    M N 84, p. 308 (1924).Google Scholar
  133. 1.
    Acc dei Lincei Rend 31, 1° Sem, p. 359; 2° Sem, p. 93 (1922).Google Scholar
  134. 2.
    Arcetri Pubbl Fasc No. 40 (1923).Google Scholar
  135. 3.
    Acc dei Lincei Rend 33, p. 554 (1924).Google Scholar
  136. 4.
    Harv Ann 26, p. 213 (1897).Google Scholar
  137. 5.
    Ann Obs Paris, Mem 25, F (1906).Google Scholar
  138. 6.
    C R 144, p. 361 (1907).Google Scholar
  139. 1.
    London Phil Trans 180 A, p. 1 (1889).Google Scholar
  140. 2.
    Phil Mag 6th Ser. 2, p. 161 (1901).Google Scholar
  141. 3.
    B S A F 25, p. 153 (1906).Google Scholar
  142. 4.
    Ann Obs Paris, Mém 25, F (1906).Google Scholar
  143. 5.
    K Svenska Vet Akad Handl 61, No. 15, p. 109 (1921).Google Scholar
  144. 1.
    Lund Medd Ser. I, No. 104 (1924).Google Scholar
  145. 1.
    K Svenska Vet Akad Handl 61, No. 15 (1921).Google Scholar
  146. 2.
    Ark Mat Astr Fys 20 A, No. 26 (1928); Upsala Medd 36.Google Scholar
  147. 3.
    K Svenska Vet Akad Handl (3) 4, No. 8 (1928); Upsala Medd 32.Google Scholar
  148. 4.
    B A N 5, p. 67 (1929).Google Scholar
  149. 1.
    Mt Wilson Contr No. 176 (1920).Google Scholar
  150. 2.
    Z f Phys 14, p. 226 (1923).Google Scholar
  151. 3.
    M N 71, p. 460 (1911); 76, p. 107 (1915).Google Scholar
  152. 4.
    K Svenska Vet Akad Handl 51, No. 5 (1913).Google Scholar
  153. 5.
    Mt Wilson Contr No. 116 (1915).Google Scholar
  154. 6.
    Potsdam Publ 15, No. 50 (1905).Google Scholar
  155. 1.
    A Research on the Spherical Dynamical Equilibrium-Distribution of Stars of Unequal Masses. Göteborg 1928.Google Scholar
  156. 2.
    The Dynamical Theory of Gases. Fourth Edition. Cambridge 1925-Google Scholar
  157. 1.
    Lund Medd Ser. II, No. 48 (1927).Google Scholar
  158. 1.
    Lund Medd Ser. II, No. 16 (1917).Google Scholar
  159. 2.
    M N 76, p. 70, 555 (1915–16); Problems of Cosmogony and Stellar Dynamics. Cambridge 1919.Google Scholar
  160. 3.
    Lund Medd Ser. II, No. 48 (1927). Also Dissertation Lund.Google Scholar
  161. 4.
    Publ A S P 37, p. 125 (1925).Google Scholar
  162. 1.
    M N 76, p. 525 (1916).Google Scholar
  163. 1.
    Ap J 60, p. 167 (1924).Google Scholar
  164. 2.
    Berlin-Babelsberg Veröff V, H. 6 (1927).Google Scholar
  165. 1.
    A N 220, p. 249 (1924).Google Scholar
  166. 1.
    A N 220, p. 249 (1924).Google Scholar
  167. 1.
    A N 221, p. 49 (1924).Google Scholar
  168. 2.
    Report of H. M. Astronomer at the Cape of Good Hope 1922, p. 4.Google Scholar
  169. 1.
    M N 89, p- 589 (1929).Google Scholar
  170. 2.
    Berlin-Babelsberg Veröff VII, Heft 1 (1927).Google Scholar
  171. 3.
    M N 77, p. 596 (1917).Google Scholar
  172. 4.
    A N 208, p. 96 (1919).Google Scholar
  173. 5.
    Undersøgelser over Doppelstjerner III (1919).Google Scholar
  174. 1.
    Publ A S P 31, p. 231 (1919).Google Scholar
  175. 2.
    Mt Wilson Contr 226; Ap J 55, p. 165 (1922).Google Scholar
  176. 3.
    Harv Ann 85, No. 5 (1923).Google Scholar
  177. 4.
    B A N 2, p. 15 (1923).Google Scholar
  178. 1.
    Publ A S P 35, p. 189 (1923).Google Scholar
  179. 1.
    M N 84, p. 308 (1924).Google Scholar
  180. 1.
    M N 77, p. 605 (1917).Google Scholar
  181. 1.
    M N 84, p. 323 (1924).Google Scholar
  182. 2.
    M N 84, p. 325 (1924).Google Scholar
  183. 1.
    Nature 117, Suppl. p. 25 (1926).Google Scholar
  184. 1.
    Harv Ann 85, No. 5 (1923).Google Scholar
  185. 2.
    Lund Medd Ser. II, No. 48 (1927).Google Scholar
  186. 3.
    A N 225, p. 305 (1925).Google Scholar
  187. 4.
    Ap J 55, p. 179; Mt Wilson Contr 226 (1922).Google Scholar
  188. 1.
    M N 85, p. 196 (1925).Google Scholar
  189. 1.
    Gaskugeln p. 6l (1907).Google Scholar
  190. 1.
    M N 85, p. 394 (1925).Google Scholar
  191. 1.
    Lund Medd Ser. II, No. 48. Also thesis Lund (1927).Google Scholar
  192. 2.
    M N 85, p. 403 (1925).Google Scholar
  193. 1.
    M N 85, p. 2 (1924).Google Scholar
  194. 2.
    M N 85, p. 423 (1925).Google Scholar
  195. 1.
    Berlin-Babelsberg Veröff 7, H. 1 (1927).Google Scholar
  196. 1.
    A N 225, p. 217 (1925).Google Scholar
  197. 2.
    Atti della Pontificia Accad (1924).Google Scholar
  198. 1.
    Ark Mat Astr Fys 20 A, No. 21. Also thesis Upsala (1927).Google Scholar
  199. 2.
    Brit. Assoc. Report 1920, p. 45- This theory seems also to have been presented independently by J. Perrin: Annales de Physique 2, p. 89 (1919), and Revue du Mois 21 p. 113 (1920).Google Scholar
  200. 1.
    A N 225, p-217 (1925).Google Scholar
  201. 2.
    A N 213, p. 1 (1921).Google Scholar
  202. 3.
    In fact, such a relation was established by Abetti in 1922.Google Scholar
  203. 1.
    Z f Phys 6, p. 40 (1921); Ap J 50, p. 220 (1919); Phil Mag (6) 40, p. 809 (1920); 41, p. 267 (1921); London R S Proc (A) 99, p. 135 (1921).Google Scholar
  204. 1.
    A N 231, p. 79 (1927).Google Scholar
  205. 1.
    Z f Phys 26, p. 139 (1924).Google Scholar
  206. 2.
    Lick Bull 10, p. 169 (1923).Google Scholar
  207. 3.
    A N 226, p. 302 (1926).Google Scholar
  208. 1.
    Wash Nat Ac Proc 10, p. 433 (1924).Google Scholar
  209. 1.
    M N 85, p. 245 (1925).Google Scholar
  210. 2.
    Lick Bull 10, p. 169 (1922).Google Scholar
  211. 1.
    The Binary Stars, p. 207. New York (1918).Google Scholar
  212. 2.
    Ark Mat Astr Fys 20 A, No. 18 (1927); Upsala Medd No. 34.Google Scholar
  213. 1.
    A J 38, p. 21 (1927).Google Scholar
  214. 2.
    Ap J 55, p. 198 (1922).Google Scholar
  215. 1.
    A N 230, p. 241 (1927).Google Scholar
  216. 1.
    A N 218, p. 205 (1923); Z f Phys 53, p. 597 (1929).Google Scholar
  217. 2.
    Z f Phys 49, p. 587 (1928).Google Scholar
  218. 1.
    M N 83, p. 444 (1923).Google Scholar
  219. 1.
    Ark Mat Astr Fys 20 A, No. 12 (1927); Upsala Medd No. 20.Google Scholar
  220. 2.
    Göttingen, Univ Sternw Veröff H. 3 (1928).Google Scholar
  221. 3.
    If so the conclusions concerning stellar masses and their relation to luminosity will also be affected to a certain extent.Google Scholar
  222. 4.
    A J 33, p. 180 (1921).Google Scholar
  223. 5.
    Excluding 85 Pegasi.Google Scholar
  224. 6.
    Excluding Sirius.Google Scholar
  225. 1.
    Lick Publ 13, p. 96 (19l8).Google Scholar
  226. 1.
    Lund Obs Circ 3, p. 64 (1931).Google Scholar
  227. 1.
    Z f Astrophys 2, p. 329 (1931).Google Scholar
  228. 2.
    M N 92, p. 662 (1932).Google Scholar
  229. 3.
    Harv Ann 85, No. 5 (1923).Google Scholar
  230. 1.
    Mt Wilson Contr No. 301 (1925); Ap J 62, p. 320.Google Scholar
  231. 2.
    Lowell Obs Bull No. 62 (1914).Google Scholar
  232. 3.
    Wash Nat Ac Proc 2, p. 517 (1916).Google Scholar
  233. 4.
    Wash Nat Ac Proc 4, p. 21 (1918).Google Scholar
  234. 5.
    V J S 49, p. 162 (1914).Google Scholar
  235. 6.
    Upsala Medd No. 40; Ark Mat Astr Fys 21, No. 10 (1928); Populär Astronomisk Tidskrift 10, p. 19 (1929).Google Scholar
  236. 1.
    Mem Coll of Sc Kyoto Imp Univ 3, No. 7, p. 199 (1918).Google Scholar
  237. 2.
    Ap J 31, p. 185 (1910).Google Scholar

Copyright information

© Julius Springer in Berlin 1933

Authors and Affiliations

  • Knut Lundmark
    • 1
  1. 1.LundSchweden

Personalised recommendations