Skip to main content
Book cover

Synergetics pp 229–274Cite as

Physical Systems

  • Chapter
  • 687 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 1))

Abstract

The laser is nowadays one of the best understood many-body problems. It is a system far from thermal equilibrium and it allows us to study cooperative effects in great detail. We take as an example the solid-state laser which consists of a set of laser-active atoms embedded in a solid state matrix (cf. Fig. 1.9). As usual, we assume that the laser end faces act as mirrors serving two purposes: They select modes in axial direction and with discrete cavity frequencies. In our model we shall treat atoms with two energy levels. In thermal equilibrium the levels are occupied according to the Boltzmann distribution function. By exciting the atoms, we create an inverted population which may be described by a negative temperature. The excited atoms now start to emit light which is eventually absorbed by the surroundings, whose temperature is much smaller than ℏω/k B (where ω is the light frequency of the atomic transition and k B is Boltzmann’s constant) so that we may put this temperature ≈ 0. From a thermodynamic point of view the laser is a system (composed of the atoms and the field) which is coupled to reservoirs at different temperatures. Thus the laser is a system far from thermal equilibrium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Physical Systems

  • For related topics see H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • and the articles by various authors in H. Haken, ed.: Synergetics (Teubner, Stuttgart 1973)

    MATH  Google Scholar 

  • and the articles by various authors in H. Haken, M. Wagner, eds.: Cooperative Phenomena (Springer, Berlin-Heidelberg-New York 1973)

    MATH  Google Scholar 

  • and the articles by various authors in H. Haken, ed.: Cooperative Effects (North Holland, Amsterdam 1974)

    Google Scholar 

  • and the articles by various authors in H. Haken (ed.): Springer Series in Synergetics Vols. 2–20 (Springer, Berlin-Heidelberg-New York)

    Google Scholar 

Cooperative Effects in the Laser. Self-Organization and Phase Transition

  • The dramatic change of the statistical properties of laser light at laser threshold was first derived and predicted by H. Haken: Z. Phys. 181, 96 (1964)

    Article  ADS  Google Scholar 

The Laser Equations in the Mode Picture

  • For a detailed review on laser theory see H. Haken: In Encyclopedia of Physics, Vol. XXV/c: Laser Theory (Springer, Berlin-Heidelberg-New York 1970)

    Google Scholar 

The Order Parameter Concept

The Single Mode Laser

  • The dramatic change of the statistical properties of laser light at laser threshold was first derived and predicted by H. Haken: Z. Phys. 181, 96 (1964)

    Article  ADS  Google Scholar 

  • For a detailed review on laser theory see H. Haken: In Encyclopedia of Physics, Vol. XXV/c: Laser Theory (Springer, Berlin-Heidelberg-New York 1970)

    Google Scholar 

  • Compare especially H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • The laser distribution function was derived by H. Risken: Z. Phys. 186, 85 (1965)

    Article  ADS  Google Scholar 

  • The laser distribution function was derived by R. D. Hempstead, M. Lax: J. Phys. Rev. 161, 350 (1967)

    Article  ADS  Google Scholar 

  • For a fully quantum mechanical distribution function cf. W. Weidlich, H. Risken, H. Haken: Z. Phys. 201, 396 (1967)

    Article  ADS  Google Scholar 

  • For a fully quantum mechanical distribution function cf. M. Scully, W. E. Lamb: Phys. Rev. 159, 208 (1967):

    Article  ADS  Google Scholar 

  • For a fully quantum mechanical distribution function cf. M. Scully, W. E. Lamb: Phys. Rev. 166, 246 (1968)

    Article  ADS  Google Scholar 

The Multimode Laser

Laser with Continuously Many Modes. Analogy with Superconductivity

First-Order Phase Transitions of the Single Mode Laser

Hierarchy of Laser Instabilities and Ultrashort Laser Pulses

  • We follow essentially H. Haken, H. Ohno: Opt. Commun. 16, 205 (1976)

    Article  ADS  Google Scholar 

  • We follow essentially H. Ohno, H. Haken: Phys. Lett. 59A, 261 (1976), and unpublished work

    ADS  Google Scholar 

  • For a machine calculation see H. Risken, K. Nummedal: Phys. Lett. 26A, 275 (1968);

    ADS  Google Scholar 

  • For a machine calculation see H. Risken, K. Nummedal: J. appl. Phys. 39, 4662 (1968)

    Article  ADS  Google Scholar 

  • For a discussion of that instability see also R. Graham, H. Haken: Z. Phys. 213, 420 (1968)

    Article  ADS  Google Scholar 

  • For temporal oscillations of a single mode laser cf. K. Tomita, T. Todani, H. Kidachi: Phys. Lett. 51A, 483 (1975)

    ADS  Google Scholar 

  • For further synergetic effects see R. Bonifacio (ed.): Dissipative Systems in Quantum Optics, Topics Current Phys., Vol. 27 (Springer, Berlin-Heidelberg-New York 1982)

    Google Scholar 

Instabilities in Fluid Dynamics: The Bénard and Taylor Problems. 8.10 The Basic Equations. 8.11 Introduction of new variables. 8.12 Damped and Neutral Solutions (R ≤ Rc)

  • Some monographs in hydrodynamics: L. D. Landau, E. M. Lifshitz: In Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, London-New York-Paris-Los Angeles 1959)

    Google Scholar 

  • Some monographs in hydrodynamics: Chia-Shun-Yih: Fluid Mechanics (McGraw Hill, New York 1969)

    Google Scholar 

  • Some monographs in hydrodynamics: G. K. Batchelor: An Introduction to Fluid Dynamics (University Press, Cambridge 1970)

    Google Scholar 

  • Some monographs in hydrodynamics: S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford 1961)

    MATH  Google Scholar 

  • Stability problems are treated particularly by Chandrasekhar l.c. and by C. C. Lin: Hydrodynamic Stability (University Press, Cambridge 1967)

    Google Scholar 

Solution Near R = Rc (Nonlinear Domain). Effective Langevin Equations. 8.14 The Fokker-Planck Equation and Its Stationary Solution

  • We follow essentially H. Haken: Phys. Lett. 46A, 193 (1973)

    ADS  Google Scholar 

  • and in particular Rev. Mod. Phys. 47, 67 (1976)

    Google Scholar 

  • For related work see R. Graham: Phys. Rev. Lett. 31, 1479 (1973):

    Article  ADS  Google Scholar 

  • For related work see R. Graham: Phys. Rev. 10, 1762 (1974)

    ADS  Google Scholar 

  • A. Wunderlin: Thesis, Stuttgart University (1975)

    Google Scholar 

  • J. Swift, P. C. Hohenberg: Phys. Rev. A15, 319 (1977)

    ADS  Google Scholar 

  • For the analysis of mode-configurations, but without fluctuations, cf. A. Schlüter, D. Lortz, F. Busse: J. Fluid Mech. 23, 129 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • F. H. Busse: J. Fluid Mech. 30, 625 (1967)

    Article  ADS  MATH  Google Scholar 

  • A. C. Newell, J. A. Whitehead: J. Fluid Mech. 38, 279 (1969)

    Article  ADS  MATH  Google Scholar 

  • R. C. Diprima, H. Eckhaus, L. A. Segel: J. Fluid Mech. 49, 705 (1971)

    Article  ADS  MATH  Google Scholar 

  • Higher instabilities are discussed by F. H. Busse: J. Fluid Mech. 52, 1, 97 (1972)

    Article  ADS  MATH  Google Scholar 

  • Higher instabilities are discussed by D. Ruelle, F. Takens: Comm. Math. Phys. 20, 167 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Higher instabilities are discussed by J. B. McLaughlin, P. C. Martin: Phys. Rev. A12, 186 (1975)

    ADS  Google Scholar 

  • Higher instabilities are discussed by J. Gollup, S. V. Benson: In Pattern Formation by Dynamic Systems and Pattern Recognition, (ed. by H. Haken), Springer Series in Synergetic Vol. 5 (Springer, Berlin-Heidelberg-New York 1979)

    Google Scholar 

  • where further references may be found. A review on the present status of experiments and theory give the books Fluctuations, Instabilities and Phase Transitions, ed. by T. Riste (Plenum Press, New York 1975)

    Google Scholar 

  • H. L. Swinney, J. P. Gollub (eds.): Hydrodynamic Instabilities and the Transitions to Turbulence, Topics Appl. Phys., Vol. 45 (Springer, Berlin-Heidelberg-New York 1981)

    Google Scholar 

  • For a detailed treatment of analogies between fluid and laser instabilities c.f. M. G. Velarde: In Evolution of Order and Chaos, ed. by H. Haken, Springer Series in Synergetics, Vol.17 (Springer, Berlin-Heidelberg-New York 1982) where further references may be found.

    Google Scholar 

A Model for the Statistical Dynamics of the Gunn Instability Near Threshold

  • J. B. Gunn: Solid State Commun. 1, 88 (1963)

    Article  ADS  Google Scholar 

  • J. B. Gunn: IBM J. Res. Develop. 8, (1964)

    Google Scholar 

  • For a theoretical discussion of this and related effects see for instance H. Thomas: In Synergetics, ed. by H. Haken (Teubner, Stuttgart 1973)

    Google Scholar 

  • Here, we follow essentially K. Nakamura: J. Phys. Soc. Jap. 38, 46 (1975)

    Article  ADS  Google Scholar 

Elastic Stability: Outline of Some Basic Ideas

  • Introductions to this field give J. M. T. Thompson, G. W. Hunt: A General Theory of Elastic Stability (Wiley, London 1973)

    MATH  Google Scholar 

  • K. Huseyin: Nonlinear Theory of Elastic Stability (Nordhoff, Leyden 1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haken, H. (1983). Physical Systems. In: Synergetics. Springer Series in Synergetics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88338-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88338-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88340-8

  • Online ISBN: 978-3-642-88338-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics