Dynamic Analysis of Blast Procedure in Tunneling

  • G. Swoboda
  • G. Zenz
  • N. Li
  • C. Kurzweil


Static analysis of tunnels in rock generally neglects the load imposed by blasting during tunnel driving. Today, the influence of time on the redistribution of stresses is largely limited to the rock’s rheology, whereby these are extremely slow load functions. It is precisely the extremely short effect of the blasting load that exerts an additional force on the rock and superposes on the loading from stress redistribution in the destroyed excavation zone. The result is an irreversible change of the rock properties immediately behind the face with a major import on further static analysis. This loosening caused by blasting, that has been a known factor to design engineers for many years, was often used to advocate mechanical tunneling without it being possible to quantify its influence.


Contact Force Stress Wave Firing Time Blast Hole Wave Propagation Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [5.3–1]
    H. Jendersie, Sprengtechnik im Bergbau, VEB, Leipzig, 1983Google Scholar
  2. [5.3–2]
    H.J. Wild, Sprengtechnik im Bergbau, Tunnel- und Stollenbau, Glückauf- Betriebsbücher, Band 10, 1977Google Scholar
  3. [5.3–3]
    Sprengtechnische Ratschläge, Dynamit Nobel Wien Ges.m.b.H. und Schaffler und Co., 10. Auflage, 1986Google Scholar
  4. [5.3–4]
    W. Thum, Über das physikalisch-mechanische Verhalten von Gestein unter Sprengeinwirkung, Nobel Hefte 37, ISSN 0029–0858, pp. 1–24, 1970Google Scholar
  5. [5.3–5]
    H.K. Kutter & C. Fairhurst, On the Fracture Process in Blasting, Int. J. Rock Mech. Sci. 8, pp. 181–202, 1971CrossRefGoogle Scholar
  6. [5.3–6]
    W.I. Duvall, Strain-wave shapes in rock near explosions, Geophys. 18, pp. 310–326, 1953CrossRefGoogle Scholar
  7. [5.3–7]
    H.L. Selberg, Transient compression waves from spherical and cylindrical cavities, Arkiv for Fysik 5 (hr. 7), pp. 97–108, 1951MathSciNetGoogle Scholar
  8. [5.3–8]
    R.F. Favreau, Generation of strain waves in rock by an explosion in a spherical cavity, J. Geophys. Res. 74, pp. 4267–4280, 1969zbMATHCrossRefGoogle Scholar
  9. [5.3–9]
    D.V. Swenson & L.M. Taylor, A Finite Element Model for the Analysis of Tailored Pulse Stimulation of Boreholes, Int. J. Num. Anal. Meth. in Geom. 7, pp. 469–484, 1983zbMATHCrossRefGoogle Scholar
  10. [5.3–10]
    C.T. Aimone, Three-Dimensional Wave Propagation Model of Full-Scale Rock Fragmentation, Ph.D. thesis, Northwestern University, 1982Google Scholar
  11. [5.3–11]
    F. Scholz, Über die Druckbeeinflussung von Sprengladungen durch die Schwaden früher detonierender Nachbar ladungen beim Sprengen mit Millisekundenzündern im Karbongestein, Berichte der Versuchs grubengesellschaft mbH, Dortmund, Heft 16, ungekürzte Fassung der Dissertation, 1981Google Scholar
  12. [5.3–12]
    C.H. Dowding & C.T. Aimone, Multiple blast-hole stresses and measured fragmentation, Rock Mech. and Rock Engng. 18, pp. 17–36, 1985CrossRefGoogle Scholar
  13. [5.3–13]
    P. Steinhauser, Sprengerschütterungen beim Tunnelvortrieb, Bundesministerium für Bauten und Technik, Straßenforschung, Heft 44, 1975Google Scholar
  14. [5.3–14]
    G. Swoboda, Programmsystem FINAL. Finite Elemente Analyse linearer und nichtlinearer Strukturen, Version 6.0, Univ. Innsbruck, Institut für Baustatik und verstärkte Kunststoffe, 1987Google Scholar
  15. [5.3–15]
    K.J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice Hall Inc., Englewood Cliffs, 1982Google Scholar
  16. [5.3–16]
    N.M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div. ASCE 85, pp. 67–94, 1959Google Scholar
  17. [5.3–17]
    O.C. Zienkiewicz, The Finite Element Method, Third Edition, McGraw-Hill, London, 1985Google Scholar
  18. [5.3–18]
    W.D. Smith, The application of finite element analysis to body wave propagation problems, Geophys., J. R. Astr. Soc. 42, pp. 747–768, 1975CrossRefGoogle Scholar
  19. [5.3–19]
    S.A. Shipley & H.G. Leistner & R.F. Jones, Elastic wave propagationa comparison between finite element predictions and exact solutions, Proc. Int. Symp. Wave Propagation and Dynamic Properties of Earth Materials, Univ. of New Mexico, pp. 509–519, 1967Google Scholar
  20. [5.3–20]
    D.P. Blair, Finite element modelling of ground surface displacements due to underground blasting, Int. J. Num. Meth. in Eng. 5, pp. 97–113, 1981Google Scholar
  21. [5.3–21]
    W. White & S. Valliappan & I.K. Lee, Finite element mesh constraints for wave propagation problems, Proc. 3th Int. Conf. on Finite Element Methods, Univ. New South Wales, Sydney, Australia, 1979Google Scholar
  22. [5.3–22]
    S. Valliappan & K.K. Ang, Dynamic analysis applied to rock mechanics problems, Proceeding of the 5th Inter. Conf. on Num. Methods in Geomechanics, Nagoya (Japan), pp. 119–132, 1985Google Scholar
  23. [5.3–23]
    Z. Celep & Z.P. Bazant, Spurious reflection of elastic waves due to gradually changing finite element size, Int. J. Num. Meth. in Eng. 19, pp. 631–646, 1983zbMATHCrossRefGoogle Scholar
  24. [5.3–24]
    J. Lysmer & R.L. Kuhlemeyer, Finite Dynamic Model for Infinite Media, J. Eng. Mech. Div., ASCE, 95, pp. 859–877, 1969Google Scholar
  25. [5.3–25]
    M. Cohen & P.C. Jennings, Silent Boundary Methods for Transient Analysis, Computation Methods for Transient Analysis, Eds. Belytschko and Hughes, Elsevier Science Pub., New York, Ch. 7, pp. 301–360, 1983Google Scholar
  26. [5.3–26]
    G. Zenz & G. Swoboda, Numerische Analyse des Sprengvortriebes in der neuen Österreichischen Tunnelbauweise, Baudynamik, Forschung und Praxis, Bochum, SFB 151 Bericht Nr. 6, pp. 54–59, 1987Google Scholar
  27. [5.3–27]
    G. Swoboda & G. Zenz, Tunnel Analysis of Rock Blasting, Int. Symp. on Geomech. Bridges and Struct., Lanzhou, pp. 575–580, 1987Google Scholar
  28. [5.3–28]
    T.J. Hughes & R.L. Taylor & J.L. Sackman & A. Cumier & W. Kanoknukulchai, A finite element method for a class of contact-impact problems, Comput. Meth. appl. Mech. Engng. 8, pp. 249–276, 1976zbMATHCrossRefGoogle Scholar
  29. [5.3–29]
    TJ. Hughes & R.L. Taylor & J.L. Sackman & W. Kanoknukulchai, A finite element method for large displacement contact and impact problems, ed. K.J. Bathe, MIT, Cambridge, MA, pp. 469–495, 1977Google Scholar
  30. [5.3–30]
    N. Asano, Principle of virtual work for two elasto-impact bodies in separate state and its application, Bull JSME24, pp. 1123–1129, 1981Google Scholar
  31. [5.3–31]
    N. Asano, A finite element method for elasto-impact contact structures with translational motion, Bull. JSME 25, pp. 501–507, 1982CrossRefGoogle Scholar
  32. [5.3–32]
    N. Asano, A penalty function typeof virtual work principle for impact contact problems of two bodies, Bull. JSME 29, pp. 3701–3709, 1986CrossRefGoogle Scholar
  33. [5.3–33]
    Y. Nakajima, Finite element analysis of transient contact, Ph.D. thesis, University of Akron, 1986Google Scholar
  34. [5.3–34]
    Lei Jiang & R.J. Rogers, Combined lagrangian multiplier and penalty function finite element technique for elastic impact analysis, Comput and Struct. 30, No.6, pp. 1219–1229, 1988zbMATHCrossRefGoogle Scholar
  35. [5.3–35]
    M.G. Katona, A simple contact-friction interface element with application to buried culverts, Int. J. Num. Anal. Meth. in Geomech. 7, pp. 371–384, 1983zbMATHCrossRefGoogle Scholar
  36. [5.3–36]
    G. Swoboda, ed., Application of the ‘decoupled finite element analysis’ in tunnelling, Proc. of the 6th ICONMIG, Austria, pp.1465–1472, 1988Google Scholar
  37. [5.3–37]
    K.J. Bathe & E.L. Wilson, Numerical methods infinite element analysis, Prentice-Hall Inc., 1976Google Scholar
  38. [5.3–38]
    K.K. Ang, Finite Element Analysis of Wave Propagation Problems, Ph.D. thesis, University of New South Wales, 1986Google Scholar
  39. [5.3–39]
    N. Holmes & T. Belytschko, Post-processing of finite element transient response calculation by digital filter, Comput and Struct. 6, pp. 211–216, 1976zbMATHCrossRefGoogle Scholar
  40. [5.3–40]
    K.D. Ta & R.J. Rogers, Control of elastic plane wave dispersion in two-dimensional finite element meshes, Comput. and Struct. 21, pp. 1145–1151, 1985CrossRefGoogle Scholar
  41. [5.3–41]
    F.G. Laturelle, Finite element analysis of wave propagation in an elastic half-space under step loading, Comput. and Struct. 32, No.3/4, pp. 721–735, 1989CrossRefGoogle Scholar
  42. [5.3–42]
    M.A. Dokainish & K. Subbaraj, A survey of direct time-integration methods in comunicational structural dynamics-I. Explicit methods, Comput. and Struct 32, No.6, pp. 1371–1386, 1989MathSciNetzbMATHCrossRefGoogle Scholar
  43. [5.3–43]
    M.A. Dokainish & K. Subbaraj, A survey of direct time-integration methods in comunicational structural dynamics-II. Implicit methods, Comput. and Struct 32, No.6, pp. 1387–1401, 1989MathSciNetzbMATHCrossRefGoogle Scholar
  44. [5.3–44]
    Jilin Yu & N. Jones, Numerical simulation of a clamped beam under impact loading, Comput. and Struct. 32, No.2, pp. 281–293, 1989CrossRefGoogle Scholar
  45. [5.3–45]
    H.C. Kurzweil, Simulationsmodell für Sprenglasten oberflächennaher Tunnel unter Berücksichtigung der Gebirgsdämpfung, University of Innsbruck, 1989Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • G. Swoboda
    • 1
  • G. Zenz
    • 2
  • N. Li
    • 1
  • C. Kurzweil
    • 1
  1. 1.Institute of Structural EngineeringUniversity of InnsbruckAustria
  2. 2.Tauernkraftwerke AGSalzburgAustria

Personalised recommendations