Sure and Random Nonlinear Analysis in the Frequency Domain: Numerical and Experimental Investigations

  • P. Fotiu
  • H. Hayek
  • H. Irschik
  • F. Ziegler
  • R. Hasenzagl

Abstract

Recently, the analysis of engineering structures, which are driven from the elastic into the physically nonlinear range by severe loadings, has become a main field of research interest. In engineering practice, the statics of inelastic structures is handled by using the plastic hinge approximation, for both steel and R/C structures, [3.6–1], [3.6–2]. However, attempts are made to overcome the drawbacks of localizing the dissipation of plastic work at discrete hinges by considering the effect of finite spread of plastic zones, e.g. [3.6–3], [3.6–4], [3.6–5], [3.6–6]. Furthermore, rate effects are to be included in the quasistatic structural analysis of time-dependent loadings, e.g. [3.6–7], [3.6–8], [3.6–9], [3.6–10].

Keywords

Coherence Ductility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [3.6–1]
    Rothert, H., Gensicher, V.: Nichtlineare Stabstatik. Springer-Verlag Heidelberg New-York (1987).MATHCrossRefGoogle Scholar
  2. [3.6–2]
    Rubin, H., Vogel, U.: Baustatik ebener Stabwerke. Stahlbau Handbuch Vol. 1, Stahlbau Verlag GmbH., Köln, Germany (1982).Google Scholar
  3. [3.6–3]
    Dorosz, S., Sawzuk, A.: Deflexions of Elastic-Plastic Beams at Finite Spread of Plastic Zones. In Proc. IUTAM Symp. Physical Nonlinearities in Structural Analysis, eds. Hult, J., Lemaitre, J., Springer Verlag, Berlin 64–73 (1981).Google Scholar
  4. [3.6–4]
    Weiß, P.: Einfluß von nichtlinearen Momenten-Krümmungsbeziehungen auf die Schnittkraftverteilung von Durchlaufträgern aus Stahlbeton. Diplomarbeit, Inst. f. Stahlbeton u. Massivbau, Technische Universität Wien (1984).Google Scholar
  5. [3.6–5]
    Irschik, H.: Das Mohrsche Verfahren zur Berechnung von Biegebalken mit nichtlinearem Werkstoffgesetz. Technische Mechanik 6, 21–28 (1985).Google Scholar
  6. [3.6–6]
    Fotiu, P., Irschik, H.: Statisch unbestimmte Sandwichbalken mit nichtlinearen Stoffgesetzen. ZAMM 66, T135–T137 (1986).Google Scholar
  7. [3.6–7]
    Irschik, H.: Berechnung inelastischer Platten mittels Einflußfunktionen. Ingenieur-Archiv, 56, 332–342 (1986).MATHCrossRefGoogle Scholar
  8. [3.6–8]
    Irschik, H.: Ein zweckmäßiges Rechenverfahren für stofflich nichtlineare statisch unbestimmte Balken. ZAMM 69, T460–T462 (1989).Google Scholar
  9. [3.6–9]
    Fotiu, P., Irschik, H., Ziegler, F.: Analysis of Viscoplastic Sandwich Beams Using Influence Functions. Mech. Struct. & Mach. 16(1), 35–52 (1988).CrossRefGoogle Scholar
  10. [3.6–10]
    Fotiu, P., Irschik, H.: Analysis of Viscoplastic Plates with Material Degradation Using Influence Functions. Trans. 9th Internat. Conf. Struct Mech. in Reactor Techn., Lausanne 1987, Vol. B, 611–616, Rotterdam: A.A. Balkema (1987).Google Scholar
  11. [3.6–11]
    Takeda, T., Sozen, M., Nielsen, N.: Reinforced concrete response to simulated earthquakes. ASCE Journ. Struct. Div. 96, 2557–2573 (1970).Google Scholar
  12. [3.6–12]
    Hasenzagl, R., Ziegler, F.: Elasto-Plastic Random Vibrations of Two-Storey Frames — Experimental Results. ÖIAZ 134, 407–409 (1989).Google Scholar
  13. [3.6–13]
    Kerenyi, K.: Experimentelle Untersuchung instationärer Zufallsschwingungen eines elasto-plastischen Rahmentragwerkes. Diplomarbeit, Institut für Allgemeine Mechanik, Technische Universität Wien (1985).Google Scholar
  14. [3.6–14]
    Kerenyi, K., Hasenzagl, R.: Institutsbericht 1/1988, Institut für Allgemeine Mechanik, Technische Universität Wien (1988).Google Scholar
  15. [3.6–15]
    Ziegler, F., Irschik, H.: Thermal Stress Analysis Based on Maysels’s Formula. A state-of-the art article of “Thermal Stresses” (R.B. Hetnarski, ed.), Vol.II, 120–188, Amsterdam: Elsevier Sc. Publ. (1987).Google Scholar
  16. [3.6–16]
    Irschik, H.: Berechnung plastizierender Biegebalken unter dynamischer Querbelastung in Analogie zum linearen Wärmeschockproblem. ZAMM 65, T60–T62 (1985).Google Scholar
  17. [3.6–17]
    Villaverde, R.: Modal Superposition Method for Seismic Design of Nonlinear Multistorey Structures. Earthquake Engineering and Structural Dynamics, Vol. 16, 691–704 (1988).CrossRefGoogle Scholar
  18. [3.6–18]
    Musolino, G.: Mode Superposition Methods for Elasto-Plastic Systems. Journ Eng. Mech. 115, 2199–2215 (1989).CrossRefGoogle Scholar
  19. [3.6–19]
    Geschwindner, L.F.: Nonlinear Dynamic Analysis by Modal Superposition. Proc. ASCE, J. Struct Div. 107, 2325–2336 (1981).Google Scholar
  20. [3.6–20]
    Ziegler, F.: Technische Mechanik der festen und flüssigen Körper. Springer Verlag Wien New-York (1985).MATHGoogle Scholar
  21. [3.6–21]
    Fotiu, P., Irschik, H., Ziegler, F.: Dynamics of Reinforced Concrete Frames Using Partitioning into Linear Elastic Solutions. Proc. 10th-Int. Conf. Struct. Mechanics in Reactor Techn., Anaheim, Cal. 1989 (Ed. A.H. Hadjian), Vol. H, 155–160, 1989.Google Scholar
  22. [3.6–22]
    Fotiu, P., Irschik, H.: Statisch unbestimmte Sandwichbalken mit nichtlinearen Stoffgesetzen. ZAMM 66. T135–T137 (1986).Google Scholar
  23. [3.6–23]
    Irschik, H.: Biaxial Dynamic Bending of Elasto-Plastic Beams. Acta Mechanica 62, 155–167 (1986).MATHCrossRefGoogle Scholar
  24. [3.6–24]
    Ziegler, F., Irschik, H.: Dynamic Analysis of Elasto-Plastic Beams by Means of Thermoelastic Solutions. Int. J. Solids Structures 21, 819–892 (1985).MATHCrossRefGoogle Scholar
  25. [3.6–25]
    Irschik, H., Ziegler, F.: Dynamics of Linear Elastic Structures with Selfstress: A Unified Treatment for Linear and Nonlinear Problems. ZAMM 68, 199–205 (1988).MATHCrossRefGoogle Scholar
  26. [3.6–26]
    Iwan, W.: Application of Nonlinear Analysis Techniques. In: Applied Mechanics in Earthquake Engineering, 135–162, AMD-Vol.8 (1974).Google Scholar
  27. [3.6–27]
    Irschik, H., Hasenzagl, R., Ziegler, F.: Elastoplastische Zufallsschwingungen bei Erdbebenerregung vom Typ Friaul, Mai 1976. ÖIAZ 132, 353–359 (1987).Google Scholar
  28. [3.6–28]
    Hasenzagl, R.: Ein piobabilistisches Berechnungsverfahren für elasto-plastische Tragwerksschwingungen. Dissertation, Institut für Allgemeine Mechanik, Technische Universität Wien (1989).Google Scholar
  29. [3.6–29]
    Irschik, H., Hayek, H., Ziegler, F.: Random Vibrations of Discrete and Continuous Inelastic Structures. Presented at ICOSSAR 89, T41 F-03.Google Scholar
  30. [3.6–30]
    Hayek, H., Irschik, H., Ziegler, F.: Random Excitation of a Yielding Cantilever: Approximate Analysis versus Simulations. Journal of Structural Safety 8, 263–279 (1990).CrossRefGoogle Scholar
  31. [3.6–31]
    Hayek, R.: Berechnung zufällig erregter elasto-plastischer Schwinger mit Berücksichtigung der Ausbreitung der plastischen Zonen. Dissertation, Institut für Allgemeine Mechanik, Technische Universität Wien (1989).Google Scholar
  32. [3.6–32]
    Irschik, H.: Nonstationary Random Vibrations of Yielding Multi-Degree-of-Freedom Systems: Method of Effective Envelope Functions. Acta Mechanica 60, 265–280 (1986).MATHCrossRefGoogle Scholar
  33. [3.6–33]
    Spanos, P.T.D.: Probabilistic Earthquake Energy Spectra Equations. Proc. ASCE, J. Eng. Mech. Div. 106, 147–159 (1980).Google Scholar
  34. [3.6–34]
    Vanmarcke, E.H.: Structural Response to Earthquakes. In Seismic risk and Engineering Decisions. Eds: Lomnits, C., Rosenblueth, E. — Amsterdam: Elsevier 287–337 (1976).Google Scholar
  35. [3.6–35]
    Vanmarcke, E.H.: On the Distribution of the First Passage Time for Normal Stationary Random Processes. Journal of Applied Mechanics 42, 215–220 (1975).MATHCrossRefGoogle Scholar
  36. [3.6–36]
    Vanmarcke, E.H., Veneziano, D.: Probabilistic Seismic Response of Simple Inelastic Systems. Proc. 5th WCEE Rome, Italy, 2851–2863 (1973).Google Scholar
  37. [3.6–37]
    Gazetas, G.: Random Vibration Analysis of Inelastic Multi-Degree-of-Freedom Systems Subjected to Earthquake Ground Motions. Dissertation, Cambridge Mass., MIT (1976).Google Scholar
  38. [3.6–38]
    Karnopp, D., Scharton, T.D.: Plastic Deformation in Random Vibration. J. Acoustical Soc. Am. 39, 1154–1161 (1966).CrossRefGoogle Scholar
  39. [3.6–39]
    Ziegler, F., Irschik, H.: Nonstationary Random Vibrations of Yielding Beams. Trans. 8th Int. Conf. SMIRT, Vol. M1, Brussels: North Holland 123–128 (1985).Google Scholar
  40. [3.6–40]
    Irschik, H., Ziegler, F.: Nonstationary Random Vibrations of Yielding Frames. Nuclear Engineering and Design 90, 357–364 (1985)CrossRefGoogle Scholar
  41. [3.6–41]
    Görtier, H.: Dimensionsanalyse. Berlin, New York: Springer Verlag (1975).CrossRefGoogle Scholar
  42. [3.6–42]
    Hasenzagl, R., Irschik, H., Ziegler, F.: Earthquake Excited Vibrations of Elasto-Plastic Structures: A Spectral Approach. In Stochastic Structural Mechanics, ed. Y. K. Lin, G. I. Schuëller. In Lecture Notes in Engineering 31, ed. C.A. Brebbia & Orszag, Springer Verlag, 226–242 (1987).Google Scholar
  43. [3.6–43]
    Hasenzagl, R., Irschik, H., Ziegler, F.: Random Vibrations of Elasto-Plastic Oscillators Due to Kanai-Tajimi Spectra: A Parametric Study. Trans. 9th Intern. Conf. SMIRT, Vol. M, A.A. Balkema, Rotterdam, 459–464 (1987).Google Scholar
  44. [3.6–44]
    Hasenzagl, R., Irschik, H., Ziegler, F.: Design Charts for Random Vibrations of Elasto-Plastic Oscillators Subjected to Kanai-Tajimi Spectra. Reliability Engineering and System Safety 23, 109–126 (1988).CrossRefGoogle Scholar
  45. [3.6–45]
    Großmayer, R.: Stochastic Analysis of Elasto-Plastic Systems. Proc. ASCE, Journ. of the Eng. Mech. Div. 39, 97–115 (1981).Google Scholar
  46. [3.6–46]
    Irschik, H., Hayek, H., Ziegler, F.: Nonstationary Random Vibrations of Continuous Inelastic Structures Taking into Account the Finite Spread of Plastic Zones. In Proc. IUTAM-Symposium Nonlinear Stochastic Dynamic Engineering Systems, 101–121, eds. Ziegler, F. and Schuëller, G.I., Springer Verlag, Berlin (1988).Google Scholar
  47. [3.6–47]
    Hayek, H., Irschik, H., Ziegler, F.: A Tower-Like Structure with Distributed Stiffness, Mass and Plastic Zones under Random Earthquake Loading. In Probabilistic Methods in Civil Engineering, 5th ASCE Speciality Conference, Blacksburg, Virginia, 408–411, ed. Spanos P.D., ASCE, New York (1988).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • P. Fotiu
    • 1
  • H. Hayek
    • 1
  • H. Irschik
    • 1
  • F. Ziegler
    • 1
  • R. Hasenzagl
    • 2
  1. 1.Civil Engineering DepartmentTechnical University of ViennaAustria
  2. 2.Control Data Ges.m.b.HViennaAustria

Personalised recommendations