Skip to main content

Pulse Propagation in a Viscoelastic Solid with Geometric Dispersion

  • Chapter
Stress Waves in Anelastic Solids

Abstract

A technique employing double integral transforms is given for treating pulse propagation problems in a viscoelastic solid with geometric dispersion. It is used in connection with a correspondence principle and a linear model. Two examples treated are, taken from the general problem of pulse scattering by a circular cylindrical cavity in the infinite solid. In the corresponding elastic problem Rayleigh waves, generated by the pulse-cavity interaction, are spatially non-decaying (in θ about the cavity), periodic disturbances that predominate for long time. It is shown that their viscoelastic counterparts are spatially attenuated waves.

This work was sponsored by AFSWC, Kirtland Air Force Base, New Mexico, through Contract No. AF 29(601)-5395 with National Engineering Science Company, Pasadena, California.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Soldate, A.M., and J. F. Hook: National Engr. Sci. Co. Tech. Doc. Rep. No. AFSWC-TDR-62–30 for Kirtland Air Force Base, N.M., (Mar. 1962), Appendix III.

    Google Scholar 

  2. Lloyd, J. R., and J. Miklowitz: Proc. 4th U.S. Nat. Congr. Appl. Mech. Vol. 1, 1962, pp. 255–268.

    MathSciNet  Google Scholar 

  3. Miklowitz, J.: National Engr. Sci. Co. Tech. Doc. Rep., No. RTD—TDR 63–3052 (AFWL, Kirtland Air Force Base, N. Mex.) Nov. 1963.

    Google Scholar 

  4. Friedlander, F. G.: Comm. Pure Appl. Math. 7, 705–732 (1954). See also Sound Pulses, Cambridge U. 1958.

    Google Scholar 

  5. Viktorov, I. A.: Sov. Phys. Accoust., Amer. Inst. Phys. Transl. 4, 131 (1958).

    Google Scholar 

  6. Erdelyi, A., et al.: Higher Transcendental Functions, Vol. 2, New York: McGraw-Hill Book Co. 1953.

    Google Scholar 

  7. Oberhettinger, F.: Tabellen zur Fourier Transformation, Berlin/Göttingen/Heidelberg: Springer-Verlag 1957.

    MATH  Google Scholar 

  8. de Hoop, A. T.: Second Annual Rep., Seismic Scattering Proj., Inst. Geophys. UCLA 1957.

    Google Scholar 

  9. Bland, D. R.: Theory of Linear Viscoelasticity, London: Pergamon 1960, pp. 95–96.

    MATH  Google Scholar 

  10. Lee, E. H., and I. Kanter: J. Appl. Phys. 24, 1115 (1953).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1964 Springer Verlag, Berlin / Göttingen / Heidelberg

About this chapter

Cite this chapter

Miklowitz, J. (1964). Pulse Propagation in a Viscoelastic Solid with Geometric Dispersion. In: Kolsky, H., Prager, W. (eds) Stress Waves in Anelastic Solids. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88288-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88288-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88290-6

  • Online ISBN: 978-3-642-88288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics