Advertisement

The Initiation of Finite Amplitude Waves in Annealed Metals

  • James F. Bell
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

Plastic wave initiation in the immediate vicinity of impacting surfaces for high purity large-grained multicrystals of fully annealed aluminum is shown to be consistent with first diameter behavior which has been obtained in fully annealed commercial purity aluminum, copper, and pure lead. These new data introduce considerable simplicity into the description of the process of plastic wave initiation since for the high purity polycrystal, the quasi-static stress-strain curve of the material and the parabolic law governing the finite amplitude wave propagation are identical. Thus for high purity aluminum, not only does the strain-rate-independent finite amplitude wave theory apply, but the governing stress-strain curve is the quasi-static stress-strain curve of the material.

Keywords

Impact Velocity Commercial Purity Finite Amplitude Hitter Velocity Anneal Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bell, J. F.: J. Appl. Phys. 27, 1109 (1956).ADSCrossRefGoogle Scholar
  2. [2]
    Bell, J. F.: J. Appl. Phys. 31, 277 (1960).ADSCrossRefGoogle Scholar
  3. [3]
    Bell, J. F.: J. Appl. Phys. 32, 1982 (1961).ADSCrossRefGoogle Scholar
  4. [4]
    Bell, J. F., and W. M. Werner: J. Appl. Phys. 33, 2416 (1962).ADSCrossRefGoogle Scholar
  5. [5]
    Bell, J. F.: J. Appl. Phys. 34, 134 (1963).ADSCrossRefGoogle Scholar
  6. [6]
    Bell, J. F.: Proc. IUTAM Symposium on 2nd Order Effects, Haifa, 1962.Google Scholar
  7. [7]
    The Scientific Papers of Sir Geoffrey Ingram Taylor, G. K. Batchelor, editor, Vol. 1, Cambridge University Press 1958, Nos. 21, 22, 27, 47.Google Scholar
  8. [8]
    Bishop, J. F. W., and R. Hill: Phil. Mag. 42, 414, 1298 (1951).MathSciNetMATHGoogle Scholar
  9. [9]
    Bell, J. F.: Manuscript submitted for publication.Google Scholar
  10. [10]
    Bell, J. F.: The Initial Development of an Elastic Strain Pulse Propagating in a Semi-Infinite Bar, Tech. Rep. No. 6, U.S. Army Ballistics Research Laboratories, Aberdeen, Contract No. DA-36–034–509-ORD-7RD; The Johns Hopkins University, 1960.Google Scholar
  11. [11]
    Bell, J. F.: J. Appl. Phys. 31, 2188 (1960).ADSCrossRefGoogle Scholar
  12. [12]
    Bell, J. F., and J. Suckling: Proc. 4th U.S. Nat. Congress Appl. Mech., Berkeley, 1962.Google Scholar
  13. [13]
    Bell, J. F.: J. Mech. Phys. Solids 9, 261 (1961).ADSCrossRefGoogle Scholar
  14. [14]
    Filbey, G. L.: Tech. Report No. 8, U.S. Army Ballistics Research Laboratories, Aberdeen, Contract No. DA-36–034–21X4992. 509-ORD-3104RD; The Johns Hopkins University, 1961.Google Scholar
  15. [15]
    Truesdell, C.: Archive Rat. Mech. Anal. 8, 263 (1961).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Bell, J. F.: J. Mech. Phys. Solids 9, 1 (1961).ADSCrossRefGoogle Scholar
  17. [17]
    Johnson, J. E., D. S. Wood and D. S. Clark: J. Appl. Mech. 9, 253 (1953).Google Scholar
  18. [18]
    Clark, D. S.: Trans. Am. Soc. Metals 45, 34 (1953).Google Scholar
  19. [19]
    Kolsky, H. and L. S. Douch: J. Mech. Phys. Solids 10, 195 (1962).ADSCrossRefGoogle Scholar
  20. [20]
    Hauser, F. E., J. A. Simmons and J. E. Dorn: Proc. AIME Conf. on Response of Materials to High Velocity Deformation, 1960, 93.Google Scholar

Copyright information

© Springer Verlag, Berlin / Göttingen / Heidelberg 1964

Authors and Affiliations

  • James F. Bell
    • 1
  1. 1.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations