Time and Place of Action of Sex-determining Factors in Ontogeny

  • Susumu Ohno
Part of the Monographs on Endocrinology book series (ENDOCRINOLOGY, volume 1)

Abstract

In multicellular organisms there is a division of labor among the various cell types that constitute an individual. Although endowed with identical genetic constitutions, different somatic cell types in different parts of the body perform different functions. This is because many of the genes are turned on only in certain somatic cell types. The gene loci for component polypeptides of hemoglobin function only in erythropoietic cells. Skin cells and cells of liver parenchyma, no doubt, maintain these genes in their nuclei, yet these genes remain dormant. Similarly, the gene locus for the hormone, insulin, is activated only in Langhans islet cells of the pancreas. The above examples are given in order to demonstrate that every gene with a specialized function has a particular somatic cell type in which to express itself.

Keywords

Cholesterol Migration Estrogenic Tuberculosis Testosterone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo, H. F., L. R. Axelrod, E. Ishikawa, and F. Takaki: Studies in fetal metabolism. II. Metabolism of progesterone 4-C14 and pregnenolene-7a-H3 in human fetal testes. J. clin. Endocrinol. Metab. 23, 885890 (1963).Google Scholar
  2. Bartter, F. C., F. Albright, A. E. Forbes, A. Leaf, E. Dempsy, and E. Caroll: The effects of adrenocorticotropic hormones and cortisone in the adrenogenital syndrome associated with congenital adrenal hyperplasia. An attempt to explain and correct its disordered hormonal pattern. J. clin. Invest. 30, 237–251 (1951).PubMedCrossRefGoogle Scholar
  3. Benirschke, K., L. E. Brownhill: Further observations on marrow chimerism in marmosets. Cytogenetics 1, 245–257 (1962).PubMedCrossRefGoogle Scholar
  4. Benirschke, K., L. E. Brownhill, M. M. Beath: Somatic chromosomes of the horse, the donkey and their hybrids, the mule and the hinny J Reprod. Fertil. 4, 319–326 (1962).PubMedCrossRefGoogle Scholar
  5. Benirschke, K., L. E. Brownhill, M. M. Beath: Heterosexual cells in testes of chimeric marmoset monkeys. Cytogenetics 2, 331–341 (1963).CrossRefGoogle Scholar
  6. M. M. Sullivan: Corpora lutea in proven mules. Fertil. and Steril. 17, 24–33 (1966).Google Scholar
  7. Benoit, J.: Transformation experimentale du sexe ovariotomie precoce chez la poule domestique. C. R. Acad. Sci. (Paris) 177, 1074–1077 (1923).Google Scholar
  8. Blanco, A., W. H. Zinkham,L. Kupchyk: Genetic control and ontogeny of lactate dehydrogenase in pigeon testes. J. exp. Zool. 156, 137152 (1964).Google Scholar
  9. Blandau, R. J., B. J. White, R. E. Rumery: Observations on the movements of the living primordial germ cells in the mouse. Fertil. and Steril. 14, 482–489 (1963).Google Scholar
  10. Booth, P. B., G. Plaut, J. D. James, E. W. Ikin, P. Moores, R. Sanger,R. R. Race: Blood chimerism in a pair of twins. Brit. med. J. I, 1456–1458 (1957).Google Scholar
  11. Coulombre, J. L., E. S. Russell: Analysis of the pleiotropism at the W-locus in the mouse. The effects of W and Wv substitution upon postnatal development of germ cells. J. exp. Zool. 126, 277–295 (1954).CrossRefGoogle Scholar
  12. Dancona, U.: Determination et differenciation du sexe chez le poissons. Arch. Anat. micr. Morph. exp. 39, 274–294 (1950).Google Scholar
  13. Ewert, J. C.: The Penicuik experiment (Graafian follicle in zebra/horse hybrid). London: Private publication. No publisher 1899.Google Scholar
  14. Fischel, A.: Lehrbuch der Entwicklung des Menschen. Berlin: Springer 1929.Google Scholar
  15. Friesen, H., and E. B. AsTwooD: Hormones of the anterior pituitary body. New Engl. J. Med. 272, 1328–1335 (1965).Google Scholar
  16. Furrow, C. L.: Development of the hermaphrodite genital organs of Val-vata tricarinata. Z. Zellforsch. mikr. Anat. 22, 282–304 (1935).Google Scholar
  17. Goldberg, E.: Lactic and malic dehydrogenases in human spermatozoa. Science 139, 602–603 (1962).CrossRefGoogle Scholar
  18. Goldzieher, J. W.,I. S. Roberts: Identification of estrogen in the human testis. J. clin. Endocrinol. Metabol. 12, 143–150 (1952)CrossRefGoogle Scholar
  19. Goodfellow, S. A., S. J. Strong, J. S. S. Stewart: Bovine freemartins and true hermaphroditism. Lancet I, 1040–1041 (1965).Google Scholar
  20. Greep, R. O,: Physiology of the anterior hypophysis in relation to reproduction. Sex and internal secretions (3rd edition). Baltimore: Williams and Wilkins Comp. Volume 1, 240–301 (1961).Google Scholar
  21. Gropp, A., S. Ohno: The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle, Bos taurus. Z. Zellforsch. mikr. Anat. 74, 505–528 (1966).Google Scholar
  22. Keller, K.,J. Tandler: Ober das Verhalten der Eihäute bei Zwillings- trächtigkeit des Rindes. Wien. tierärztl. Mschr. 3, 513–527 (1917).Google Scholar
  23. Laufer, A., F. G. Sulman: Estrogenic Leydig cell tumor with multiple metastases in a dog. The problem of bisexual hormone production by gonadal cells. J. clin. Endocrinol. Metabol. 16, 1151–1162 (1956).CrossRefGoogle Scholar
  24. Lillie, F. R.: The freemartin; a study of the action of sex hormones in the foetal life of cattle. J. exp. Zool. 23, 371–422 (1917).CrossRefGoogle Scholar
  25. Macintyre, M. N.: Effect of the testis on ovarian differentiation in hetero- sexual embryonic rat gonad transplants. Anat. Rec. 124, 27–46 (1956).PubMedCrossRefGoogle Scholar
  26. Macintyre, M. N., J. E. Hunter, A. H. Morgan: Spatial limits of activity of fetal gonadal inductors in the rat. Anat. Rec. 138, 137–148 (1960).PubMedCrossRefGoogle Scholar
  27. Mckay, D. G., A. T. Hertig, E. C. Adams, S. Danziger: Histochemical observations on the germ cells of human embryos. Anat. Rec. 117, 201–220 (1953).PubMedCrossRefGoogle Scholar
  28. Markert, C. L.: Cellular differentiation — an expression of differential gene function. In: Congenital malformations, pp. 163–174 (1964). The International Medical Congress, New York.Google Scholar
  29. Meyer, G. F.: Die Funktionsstrukturen des Y-Chromosoms in den Spermatocytenkernen von Drosophila hydei, D. neohydei, D. repleta and einigen anderen Drosophila-Arten. Chromosoma 14, 207–255 (1963).CrossRefGoogle Scholar
  30. Miller, R. A.: Spermatogenesis in a sex-reversed female and in normal males of the domestic fowl, Gallus dornesticus. Anat. Rec. 70, 155–189 (1938).CrossRefGoogle Scholar
  31. Mintz, B.: Embryological development of primordial germ cells in the mouse: Influence of a new mutation Wi1. J. Embryol. exp. Morphol. 5, 396–403 (1957).Google Scholar
  32. Ohno, S., A. Grofp: Embryological basis for germ cell chimerism in mammals. Cytogenetics 4, 251–261 (1965).PubMedCrossRefGoogle Scholar
  33. W. D. Kaplan, R. Kinosita: On the end-to-end association of the X and Y-chromosomes of Mus musculus. Exp. Cell Res. 18, 282–290 (1959).PubMedCrossRefGoogle Scholar
  34. H. P. Klinger, N. B. Atkin: Human oögenesis. Cytogenetics 1, 4251 (1962).CrossRefGoogle Scholar
  35. J. TRUJILLO, C. STENIUS, L. C. CHRISTIAN, and R. TEPLITZ: Possible germ cell chimeras among newborn dizygotic twin calves (Bos taurus). Cytogenetics 1, 258–265 (1962).PubMedCrossRefGoogle Scholar
  36. J. B. Smith: Role of fetal follicular cells in meiosis of mammalian oöcytes. Cytogenetics 3, 324–333 (1964).CrossRefGoogle Scholar
  37. Ryan, K. J., K. Benirschke,O. W. Smith: Conversion of androstenedione-4-C14 to estrone by the marmoset placenta. Endocrinology 69, 613–618 (1961).PubMedCrossRefGoogle Scholar
  38. Stone, W. H., D. T. Berman, W. J. Tyler, M. R. Irwin: Blood types of the progeny of a pair of cattle twins showing erythrocyte mosaicism. J. Hered. 51, 136–140 (1960).Google Scholar
  39. Trujillo, J. M., C. Stenius, L. C. Christian, and S. Ohno: Chromosomes of the horse, the donkey, and the mule. Chromosoma (Berl.) 13, 243–248 (1962).CrossRefGoogle Scholar
  40. Wislocki, G. B.: Obervations on twinning in marmosets. Amer. J. Anat. 64, 445–483 (1939).CrossRefGoogle Scholar
  41. Wxtschi, E.: Genes and inductors of sex differentiation in amphibians. Biol. Rev. 9, 460–488 (1934).CrossRefGoogle Scholar
  42. Wxtschi, E.: Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contr. Embryol. Carneg. Instn. 32, 67–80 (1948).Google Scholar
  43. Wxtschi, E.: Embryology of the ovary. In: The ovary. Baltimore: The Williams and Wilkins Co. 1962.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • Susumu Ohno
    • 1
  1. 1.Department of BiologyCity of Hope MedicalDuarteUSA

Personalised recommendations