Quantitative Chemical Analysis of Standard Iron Alloys by SIMS

  • Z. Jurela
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 19)


SIMS technique is often used for the quantitative chemical analysis of alloys. It is considered to be a semiquantitative method. The models of plasma in the local thermal equilibrium at the surface (LTE) for 50% of the results have the factor of discrepancy smaller than 2, and only for 5% of the results it is higher than factor 5 [1–8]. The application of the non-equilibrium surface ionization model for the quantitative chemical analysis is of recent date [9,10]. Good agreement of theoretical and experimental results for ALCAN aluminium, ferro-niobium and basalt rock has been obtained [10]. For the majority of constituents the factor of discrepancy is smaller than 1.5, and only for niobium it is approximately 4.


Charge Exchange Local Thermal Equilibrium Interface Anal Relative Sensitivity Factor Sensitivity Tactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.A. Andersen and J.R. Hinthorne, Anal. Chem. 45, 1421 (1973)CrossRefGoogle Scholar
  2. 2.
    A.E. Morgan and H.W. Werner, Anal. Chem. 48, 699 (1976)CrossRefGoogle Scholar
  3. 3.
    D.S. Simons, J.E. Beker and C.A. Evans, Jr., Anal. Chem. 48, 1341 (976)Google Scholar
  4. 4.
    J.M. Schroeer, J. Vac. Sci. Technol. 14, 343 (1977)ADSGoogle Scholar
  5. 5.
    D.H. Smith and W.H. Christie, Int. J. Mass Spectrom. Ion Phys. 26, 61 (1978)CrossRefGoogle Scholar
  6. 6.
    H.W. Werner, Surf. Interface Anal. 2, 56 (1980)CrossRefGoogle Scholar
  7. 7.
    L. Illgen, H. Mai, U. Seidenkranz and R. Voigtmann, Surf. Interface Anal. 2, 77 (1980)CrossRefGoogle Scholar
  8. 8.
    A.E. Morgan, Surf. Interface Anal. 2, 123 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    A.G. Lototskii and F.A. Gimel’farb, Zh. Anal. Chem. 31, 433 (1976)Google Scholar
  10. 10.
    Z. Jurela, Int. J. Mass Spectrom. Ion Phys. 37, 67 (1981)CrossRefGoogle Scholar
  11. 11.
    Z. Jurela, Int. J. Mass Spectrom. Ion Phys. 12, 33 (1973)CrossRefGoogle Scholar
  12. 12.
    Z. Jurela, Radiat. Eff. 19, 175 (1973)CrossRefGoogle Scholar
  13. 13.
    J.B. Sanders, Radiat. Eff. 51, 43 (1980)CrossRefGoogle Scholar
  14. 14.
    R.E. Johnson and R. Evatt, Radiat Eff. 52, 187 (1980)CrossRefGoogle Scholar
  15. 15.
    M. Szymonski, 9th ICACS, Lyon’81, to be published in Nucl. Instrum. and Meth.Google Scholar
  16. 16.
    Z. Jurela, 9th ICACS, Lyon’81, to be published in Nucl. Instrum. and Meth.Google Scholar
  17. 17.
    J. Jurela, to be publishedGoogle Scholar
  18. 18.
    B.S. Fomenko, I.A. Podcernyaeva, “Emissionnye i adsorbcionnye svojstva vescestv i materialov, Spravocnik”, Atomizdat, Moskva, 1975Google Scholar
  19. 19.
    CRC Handbook on Chemistry and Physics“, 57th edition, 1976–1977, ed. R.C. Weast, CRC Press, ClevelandGoogle Scholar
  20. 20.
    J.C. Slater, J. Chem. Phys. 41, 3199 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    C.H. Corliss, J. Rez. Phys. Chem. 66A, 169 (1962)Google Scholar
  22. 22.
    W.C. Lineberger, IEEE Trans. Nucl. Sci. NS-23, 934 (1976)Google Scholar
  23. 23.
    R.J. Zollweg, J. Chem. Phys. 50, 4251 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Z. Jurela
    • 1
  1. 1.Laboratory for Atomic PhysicsBoris Kidric Institute of Nuclear SciencesBeogradYugoslavia

Personalised recommendations