Skip to main content

Particle Scattering in Classical Mechanics

  • Chapter
  • 1973 Accesses

Part of the book series: Texts and Monographs in Physics ((TMP))

Abstract

The scattering of classical particles by a central field of force or by one another is described in terms of the particle’s orbit of motion. The latter is most simply obtained from the hamiltonian via the Hamilton-Jacobi equation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. For discussions of the Hamilton-Jacobi equation see, for example, H. Goldstein, (1980), where further references can be found at the end of chaps. 9 and 10.

    Google Scholar 

  2. The cross section for the scattering of charged particles in a Coulomb field was first calculated by E. Rutherford (1911), and it was instrumental in his discovery of the atomic nucleus from the atomic scattering of α particles. It is one of the striking facts of quantum mechanics that, if effects of relativity are neglected, this cross section has exactly the same value when calculated classically and quantum mechanically. We can only speculate for how long the discovery of the nucleus would have been delayed if it had not been for this coincidence which made the classical argument used by Rutherford correct.

    Google Scholar 

  3. For a detailed explanation of a general contour integration technique of carrying out an integral such as (5.6), say, in the Coulomb case, see A. Sommerfeld (1933), pp. 645ff.

    Google Scholar 

  4. See I. Herbst (1974a) for trajectories of particles in a Coulomb field.

    Google Scholar 

  5. For discussions of orbiting, or spiral scattering, see Hirschfelder, Curtiss, and Bird, (1954) and Ford and Wheeler (1959).

    Google Scholar 

  6. For discussions of glory and rainbow scattering in electromagnetic scattering, see Chap. 3; for their discussion in classical particle scattering, see Ford and Wheeler (1959).

    Google Scholar 

  7. A discussion of classical particle scattering by an r-4 potential can be found in Vogt and Wannier (1954).

    Google Scholar 

  8. The derivation of the relation between the c.m. cross section and the cross section in a general coordinate system follows R. G. Newton (1972). For a detailed discussion of classical scattering in the laboratory system, see M. Gryzinski (1965a).

    Google Scholar 

  9. The content of this section is based on a paper by Keller, Kay, and Shmoys (1956), in which the examples of Rutherford scattering and scattering by an r -2 potential are also worked out explicitly. See also F. C. Hoyt (1939); Minerbo and Levy (1969); and W. H.Miller (1969b).

    Google Scholar 

  10. Integral equations of the Abel type are given in G. Doetsch (1956), pp. 157ff. Integrals of the Euler-transform type (5.41) are also called Riemann-Liouville fractional integrals, and they are tabulated in A. Erdelyi (1954), vol. 2, pp. 185ff.

    Google Scholar 

  11. General Note. For formulations of classical particle scattering in a language related to that used in quantum mechanics, see Prigogine and Henin (1957 and 1959); P. Résibois (1959); Miles and Dahler (1970); B. C. Eu (1971a); W. Hunziker (1974); T. A. Osborn et al. (1980); Narnhofer and Thirring (1981); Bollé and Osborn (1981); K. Yajima(1981e).

    Google Scholar 

  12. For classical treatments of the three-body scattering problem, in which particle A impinges upon a bound system of particles B and C and either A and the bound system (2?, C) emerge unscathed or else B and the bound system (A, C), or Cand (A, B), emerge, see Karplus, Porter, and Sharma (1964 and 1965), Karplus and Raff (1964), and Biais and Bunker (1964). See also M. Gryzinski (1965b); B. C. Eu (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Newton, R.G. (1982). Particle Scattering in Classical Mechanics. In: Scattering Theory of Waves and Particles. Texts and Monographs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88128-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88128-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88130-5

  • Online ISBN: 978-3-642-88128-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics