Skip to main content

Algorithmic Methods for Real-Time Scheduling

  • Conference paper

Part of the book series: NATO ASI Series ((NATO ASI F,volume 127))

Abstract

Task scheduling is a wide research area whose results gained increasing interest during the last decades. A great variety of different algorithmic methods has been developed. Though these methods are very often adjusted to the specifics of the various scheduling problems, there are few principles along which scheduling algorithms work. The purpose of this contribution is to give an overview on the main algorithmic approaches applied in real-time scheduling. Different methods for solving selected problem classes are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Adolphson, and T.C. Hu, Optimal linear ordering, SIAM J. Appl. Math., Vol. 25, 1973, 403–423.

    Article  MathSciNet  MATH  Google Scholar 

  2. U. Bagchi, and R. H. Ahmadi, An improved lower bound for minimizing weighted completion times with deadlines, Oper. Res., Vol. 35, 1987, 311–313.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bellman, S. E. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1962.

    MATH  Google Scholar 

  4. S. P. Bansal, Single machine scheduling to minimize weighted sum of completion times with secondary criterion — a branch-and-bound approach, European J. Oper. Res., Vol. 5, 1980, 177–181.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date constraints, Naval Res. Logist. Quart., Vol. 18, 1971, 511–517.

    Article  Google Scholar 

  6. P. Brucker, M.R. Garey, and D.S. Johnson, Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness, Math. Oper. Res., Vol. 2, 1977, 275–284.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Blaiewicz, Simple algorithms for multiprocessor scheduling to meet deadlines, Inform. Process. Lett., Vol. 6, 1977, 162–164.

    Article  Google Scholar 

  8. J. Blaiewicz, Scheduling preemptible tasks on parallel processors with information loss, Tech. Sci. Inform., Vol. 3, 1984, 415–420.

    Google Scholar 

  9. J. Blaiewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to resource constraints: classification and complexity, Discrete Appl. Math., Vol. 5, 1983, 11–24.

    Article  MathSciNet  Google Scholar 

  10. H. Buer, R. H. Möhring, A fast algorithm for the decomposition of graphs and posets, Math. Oper. Res., Vol. 8, 1983, 170–184.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Bianco, and S. Ricciardelli, Scheduling of a single machine to minimize total weighted completion time subject to release dates, Naval Res. Logist. Quart., Vol. 29, 1982, 151–167.

    Article  MATH  Google Scholar 

  12. P. J. Brucker, Sequencing unit-time jobs with treelike precedence on in machines to minimize maximum lateness, Proceedings IX International Symposium on Mathematical Programming, Budapest, 1976.

    Google Scholar 

  13. R. N. Burns, Scheduling to minimize the weighted sum of completion times with secondary criteria, Naval Res. Logist. Quart., Vol. 23, 1976, 25–129.

    Article  MathSciNet  Google Scholar 

  14. E. G. Coffman, Jr., R. L. Graham, Optimal scheduling for two-processor systems, Acta Inform., Vol. 1, 1972, 200–213.

    Article  MathSciNet  Google Scholar 

  15. E. G. Coffman, Jr., M. R. Carey, Proof of the 4/3 conjecture for preemptive versus nonpreemptive two-processor scheduling, Report Bell Laboratories, Murray Hill, 1991.

    Google Scholar 

  16. E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, An application of bin-packing to multiprocessor scheduling, SIAM J.Comput., Vol. 7, 1978, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, Appoximation algorithms for bin packing — an updated survey, in: G. Ausiello, M. Lucertini, P. Serafini (eds.), Algorithm Design for Computer System Design, Springer Verlag, Vienna, 1984, 49–106.

    Google Scholar 

  18. N.-F. Chen, C. L. Liu, On a class of scheduling algorithms for multiprocessors computing systems, in: T.-Y. Feng (ed.), Parallel Processing, Lecture Notes in Computer Science 24, Springer Verlag, Berlin, 1975, 1–16.

    Google Scholar 

  19. S. A. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symposium on Theory of Computing, 1971, 151–158.

    Google Scholar 

  20. E. G. Coffman, Jr., and R. Sethi, A generalized bound on Ipt sequencing, nAiRoInformatique 10, 1976, 17–25.

    MathSciNet  MATH  Google Scholar 

  21. S. Chand, H. Schneeberger, A note on the single-machine scheduling problem with minimum weighted completion time and maximum allowable tardiness, Naval Res. Logist. Quart., Vol. 33, 1986, 551–557.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. I. Dessouky, and J. S. Deogun, Sequencing jobs with unequal ready times to minimize mean flow time, SIAM J. Comput., Vol. 10, 1981, 192–202.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Du, J. Y-T. Leung, Scheduling tree-structured tasks with restricted execution times, Inform. Process. Lett., Vol. 28, 1988, 183–188.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Du, J. Y-T. Leung, Scheduling tree-structured tasks on two processors to minimize schedule length, SIAM J. Discrete Math., Vol. 2, 1989, 176–196.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Du, and J. Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard, Math. Oper. Res., Vol. 15, 1990, 483–495.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Emmons, One machine sequencing to minimize mean flow time with minimum number tardy, Naval Res. Logist. Quart., Vol. 22, 1975, 585–592.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Fujii, T. Kasami, K. Ninomiya, Optimal sequencing of two equivalent processors, SIAM J. Appl. Math., Vol. 17, 1969, 784–789, Err: SIAM J. Appl. Math., Vol. 20, 1971, 141.

    MathSciNet  MATH  Google Scholar 

  28. H. N. Gabow, An almost linear algorithm for two-processor scheduling, J. Assoc. Comput. Mach., Vol. 29, 1982, 766–780.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. R. Garey, and D. S. Johnson, Scheduling tasks with non-uniform deadlines on two processors, J. Assoc. Comput. Mach., Vol. 23, 1976, 461–467.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  31. M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan, Scheduling unit-time tasks with arbitrary release times and deadlines, SIAM J. Comput., Vol. 10, 1981, 256–269.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. R. Garey, D. S. Johnson, R. E. Tarjan, M. Yannakakis, Scheduling opposing forests, SIAM J. Algebraic and Discrete Math., Vol. 4, 1983, 72–93.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey, A.n. Discrete Math., Vol. 5, 1979, 287–326.

    Article  MATH  Google Scholar 

  34. R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Tech. J., Vol. 45, 1966, 1563–1581.

    Article  Google Scholar 

  35. W. A. Horn, Single-machine job sequencing with tree-like precedence ordering and linear delay penalties, SIAM J. Appl. Math., Vol. 23, 1972, 189–202.

    Article  MathSciNet  MATH  Google Scholar 

  36. W. A. Horn, Some simple scheduling algorithms, Naval Res. Logist. Quart., Vol. 21, 1974, 177–185.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. S. Hochbaum, D. B. Shmoys, Using dual approximation algorithms for scheduling problems: theoretical and practical results, J. Assoc. Comput. Mach., Vol. 34, 1987, 144–162.

    Article  MathSciNet  Google Scholar 

  38. T. C. Hu, Parallel sequencing and assembly line problems, Oper. Res., Vol. 9, 1961, 841–848.

    Article  Google Scholar 

  39. T. Ichimori, H. Ishii, T. Nishida, Algorithm for one machine job sequencing with precedence constraints, J. Oper. Res. Soc. Japan, Vol. 24, 1981, 159–169.

    MathSciNet  MATH  Google Scholar 

  40. O. H. Ibarra, C. E. Kim, Approximation algorithms for certain scheduling problems, Math. Oper. Res., Vol. 3, 1978, 197–204.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 1972, 85–104.

    Chapter  Google Scholar 

  42. H. Kise, T. Ibaraki, H. Mine, A solvable case of a one-machine scheduling problem with ready and due times, Oper. Res., Vol. 26, 1978, 121–126.

    Article  MathSciNet  MATH  Google Scholar 

  43. K. R. Kalra, K. Khurana, Single machine scheduling to minimize waiting cost with secondary criterion, J. Math. Sci., Vols. 16–18, 1981–1983, 9–15.

    Google Scholar 

  44. M. Kunde, Beste Schranke beim LP-Scheduling, Bericht 7603, Institut fur Informatik und Praktische Mathematik, University Kiel, 1976.

    Google Scholar 

  45. J. R. Jackson, Scheduling a production line to minimize maximum tardiness, Research Report 43, Management Sci. Res. Project, UCLA, 1955.

    Google Scholar 

  46. E. L. Lawler, Sequencing to minimize the weighted number of tardy jobs, RAIRO Rech. Opr., Vol. 10, 1976, Suppl. 27–33.

    MathSciNet  Google Scholar 

  47. E. L. Lawler, A `pseudopolynomial’ algorithm for sequencing jobs to minimize total tardiness, Ann. Discrete Math., Vol. 1, 1977, 331–342.

    Article  MathSciNet  Google Scholar 

  48. E. L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence constraints, Ann. Discrete Math., Vol. 2, 1978, 75–90.

    Article  MathSciNet  MATH  Google Scholar 

  49. E. L. Lawler, Sequencing a single machine to minimize the number of late jobs, Preprint, Computer Science Division, University of California, Berkeley, 1982.

    Google Scholar 

  50. E. L. Lawler, Recent results in the theory of machine scheduling, in: A. Bachem, M. Grötschel, B. Korte (eds.), Mathematical Programming: The State of the Art, Bonn 1982, Springer-Verlag, Berlin, 1983, 202–234.

    Chapter  Google Scholar 

  51. J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tracts 69, Mathematisch Centrum, Amsterdam, 1977.

    Google Scholar 

  52. J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, W. Zhao, Algorithms for scheduling imprecise computations, Report No. UIUCDCS-R-90–1628, Department of Computer Science, University of Illinois, 1990.

    Google Scholar 

  53. J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under precedence constraints, Oper. Res., Vol. 26, 1978, 22–35.

    Article  MATH  Google Scholar 

  54. J. K. Lenstra, A. H. G. Rinnoy Kan, Complexity results for scheduling chains on a single machine, European J. Oper. Res., Vol. 4, 1980, 270–275.

    Article  MathSciNet  MATH  Google Scholar 

  55. J. K. Lenstra, A. H. G. Rinnoy Kan, P. Brucker, Complexity of Machine Scheduling Problems, Ann. Discrete Math., Vol. 1, 1977, 343–362.

    Article  Google Scholar 

  56. J. Y-T. Leung, G. H. Young, Minimizing total tardiness on a single machine with precedence constraints, ORSA J. Comput, to appear.

    Google Scholar 

  57. R. NcNaughton, Scheduling with deadlines and loss functions, Management Sci., Vol. 6, 1959, 1–12.

    Article  MathSciNet  Google Scholar 

  58. S. Miyazaki, One machine scheduling problem with dual criteria, J. Oper. Res. Soc. Japan, Vol. 24, 1981, 37–51.

    MathSciNet  MATH  Google Scholar 

  59. J. M. Moore, Ann job, one machine sequencing algorithm for minimizing the number of late jobs, Management Sci., Vol. 15, 1968, 102–109.

    Article  MATH  Google Scholar 

  60. R. H. Möhrig, F. J. Radermacher, Generalized results on the polynomiality of certain weighted sum scheduling problems, Methods of Oper. Res., Vol. 49, 1985, 405–417.

    Google Scholar 

  61. C. L. Monma, J. B. Sidney, Optimal sequencing via modular decomposition: characterization of sequencing functions, Math. Oper. Res., Vol. 12, 1987, 2231.

    MathSciNet  Google Scholar 

  62. J. H. Muller, J. Spinrad, Incremental modular decomposition, J. Assoc. Comput. Mach., Vol. 36, 1989, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  63. K. Nakajima, J. Y-T. Leung, S. L. Hakimi, Optimal two processor scheduling of tree precedence constrained tasks with two execution times, Performance Evaluation, Vol. 1, 1981, 320–330.

    MathSciNet  MATH  Google Scholar 

  64. M. E. Posner, Minimizing weighted completion times with deadlines, Oper. Res., Vol. 33, 1985, 562–574.

    Article  MathSciNet  MATH  Google Scholar 

  65. C. N. Potts, A Lagrangian based branch and bound algorithm for a single machine sequencing with precedence constraints to minimize total weighted completion time, Management Sci., Vol. 31, 1985, 1300–1311.

    Article  MathSciNet  MATH  Google Scholar 

  66. C. N. Potts, L. N. van Wassenhove, An algorithm for single machine sequencing with deadlines to minimize total weighted completion time, European J. Oper. Res., Vol. 12, 1983, 379–387.

    Article  MATH  Google Scholar 

  67. S. Satin, Algorithms for scheduling independent tasks, J. Assoc. Comput. Mach., Vol. 23, 1976, 116–127.

    Article  MathSciNet  Google Scholar 

  68. J. B. Sidney, An extension of Moore’s due date algorithm, in: S. E. Elmaghraby (ed.), Symposium on the Theory of Scheduling and Its Applications, Springer-Verlag, Berlin, 1973, 393–398.

    Chapter  Google Scholar 

  69. J. B. Sidney, Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs, Oper. Res., Vol. 23, 1975, 283–298.

    Article  MathSciNet  MATH  Google Scholar 

  70. W. E. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart., Vol. 3, 1956, 59–66.

    Article  MathSciNet  Google Scholar 

  71. J. B. Sidney, G. Steiner, Optimal sequencing by modular decomposition: polynomial algorithms, Oper. Res., Vol. 34, 1986, 606–612.

    Article  MathSciNet  MATH  Google Scholar 

  72. F. J. Villarreal, R. L. Bulfin, Scheduling a single machine to minimize the weighted number of tardy jobs, AIIE Trans., Vol. 15, 1983, 337–343.

    Google Scholar 

  73. P. Bratley, M. Florian, P. Robillard, Scheduling with earliest start and due date constraints, Naval Res. Logist. Quart., Vol. 18, 1971, 511–517.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ecker, K. (1994). Algorithmic Methods for Real-Time Scheduling. In: Halang, W.A., Stoyenko, A.D. (eds) Real Time Computing. NATO ASI Series, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88049-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88049-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88051-3

  • Online ISBN: 978-3-642-88049-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics